
ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ �ÏËÕÔÅ×ÍÅÉÏÓ×ÏËÇ ÇËÅÊÔÑÏËÏ�ÙÍ ÌÇ×ÁÍÉÊÙÍ ÊÁÉ ÌÇ×ÁÍÉÊÙÍ Õ�ÏËÏ�ÉÓÔÙÍÔÏÌÅÁÓ ÔÅ×ÍÏËÏ�ÉÁÓ �ËÇÑÏÖÏÑÉÊÇÓ ÊÁÉ Õ�ÏËÏ�ÉÓÔÙÍÅÑ�ÁÓÔÇÑÉÏ Õ�ÏËÏ�ÉÓÔÉÊÙÍ ÓÕÓÔÇÌÁÔÙÍ�áñáëëçëïðïßçóç Êþäéêá Âñü÷ùí óå Áñ÷é�åê�ïíéêÝòìç Ïìïéüìïñöçò �ñïóðÝëáóçò ÌíÞìçò (NUMA)
ÄÉÄÁÊÔÏÑÉÊÇ ÄÉÁÔÑÉÂÇ
Ìáñßá �. ÁèáíáóÜêç

ÁèÞíá, ÄåêÝìâñéïò 2005

ÅÈÍÉÊÏ ÌÅÔÓÏÂÉÏ �ÏËÕÔÅ×ÍÅÉÏÓ×ÏËÇ ÇËÅÊÔÑÏËÏ�ÙÍ ÌÇ×ÁÍÉÊÙÍ ÊÁÉ ÌÇ×ÁÍÉÊÙÍ Õ�ÏËÏ�ÉÓÔÙÍÔÏÌÅÁÓ ÔÅ×ÍÏËÏ�ÉÁÓ �ËÇÑÏÖÏÑÉÊÇÓ ÊÁÉ Õ�ÏËÏ�ÉÓÔÙÍÅÑ�ÁÓÔÇÑÉÏ Õ�ÏËÏ�ÉÓÔÉÊÙÍ ÓÕÓÔÇÌÁÔÙÍ�ÑÁÊÔÉÊÏ ÅÎÅÔÁÓÇÓ ÄÉÄÁÊÔÏÑÉÊÇÓ ÄÉÁÔÑÉÂÇÓ�çòÌáñßáò �. ÁèáíáóÜêçÄéðëùìá�ïý÷ïõ Çëåê�ñïëüãïõ Ìç÷áíéêïý êáé Ìç÷áíéêïý Õðïëïãéó�þí Å.Ì.�. (2001)�áñáëëçëïðïßçóç Êþäéêá Âñü÷ùí óå Áñ÷é�åê�ïíéêÝò ìçÏìïéüìïñöçò �ñïóðÝëáóçò ÌíÞìçò (NUMA)ÔñéìåëÞò Óõìâïõëåõ�éêÞ åðé�ñïðÞ: �áíáãéþ�çò ÔóáíÜêáò, åðéâëÝðùí�åþñãéïò �áðáêùíó�áí�ßíïõÍåê�Üñéïò ÊïæýñçòÅãêñßèçêå áðü �çí åð�áìåëÞ åîå�áó�éêÞ åðé�ñïðÞ �çí�. ÔóáíÜêáò �. �áðáêùíó�áí�ßíïõ Í. ÊïæýñçòÊáèçãç�Þò Å.Ì.�. Êáèçãç�Þò Å.Ì.�. Åðßê. Êáèçãç�Þò Å.Ì.�..........................Å. ÆÜ÷ïò Ô. ÓåëëÞòÊáèçãç�Þò Å.Ì.�. Êáèçãç�Þò Å.Ì.�..........................Á. Óõìâþíçò È. Èåï÷ÜñçòÁíáðë. Êáèçãç�Þò Å.Ì.�. Êáèçãç�Þò �áíåðéó�çìßïõ ÁèçíþíÁèÞíá, ÄåêÝìâñéïò 2005

.................Ìáñßá �. ÁèáíáóÜêçÄéäÜê�ùñ Çëåê�ñïëüãïò Ìç÷áíéêüò êáé Ìç÷áíéêüò Õðïëïãéó�þí Å.Ì.�.

Copyright
© Ìáñßá �. ÁèáíáóÜêç, 2005Ìå åðéöýëáîç ðáí�üò äéêáéþìá�ïò - All rights reservedÁðáãïñåýå�áé ç áí�éãñáöÞ, áðïèÞêåõóç êáé äéáíïìÞ �çò ðáñïýóáò åñãáóßáò, åî' ïëïêëÞñïõ Þ�ìÞìá�ïò áõ�Þò ãéá åìðïñéêü óêïðü. Åðé�ñÝðå�áé ç áíá�ýðùóç, áðïèÞêåõóç êáé äéáíïìÞ ãéáóêïðü ìç êåñäïóêïðéêü, åêðáéäåõ�éêÞò Þ åñåõíç�éêÞò öýóçò, õðü �çí ðñïûðüèåóç íá áíáöÝñå�áéç ðçãÞ ðñïÝëåõóçò êáé íá äéá�çñåß�áé ç ðáñïýóá óçìåßùóç. Åñù�Þìá�á ðïõ áöïñïýí �ç ÷ñÞóç�çò åñãáóßáò ãéá êåñäïóêïðéêü óêïðü ðñÝðåé íá áðåõèýíïí�áé ðñïò �ç óõããñáöÝá.Ïé áðüøåéò êáé �á óõìðåñÜóìá�á ðïõ ðåñéÝ÷ïí�áé óå áõ�Þí �ç äéá�ñéâÞ åêöñÜæïõí �ç óõããñáöÝáêáé äåí ðñÝðåé íá èåùñçèåß ü�é áí�éðñïóùðåýïõí �éò åðßóçìåò èÝóåéò �ïõ Åèíéêïý Ìå�óüâéïõ�ïëõ�å÷íåßïõ.

NATIONAL TECHNICAL UNIVERSITY OF ATHENSSCHOOL OF ELECTRICAL AND COMPUTER ENGINEERINGDEPARTMENT OF COMPUTER SCIENCECOMPUTING SYSTEMS LABORATORYParallelization of Nested Loop Codes forNon-Uniform Memory A

ess (NUMA)Ar
hite
tures
PHD THESIS

Maria G. Athanasaki
Athens, Gree
e, De
ember 2005

.................Maria G. AthanasakiS
hool of Ele
tri
al and Computer Engineering, National Te
hni
al University of Athens, Gree
e

Copyright
© Maria G. Athanasaki, 2005All rights reservedNo part of this thesis may be reprodu
ed, stored in retrieval systems, or transmitted in any formor by any means { ele
troni
, me
hani
al, photo
opying, or otherwise { for pro�t or
ommer
ialadvantage. It may be reprinted, stored or distributed for a non-pro�t, edu
ational or resear
hpurpose, given that its sour
e of origin and this noti
e are retained. Any questions
on
erningthe use of this thesis for pro�t or
ommer
ial advantage should be addressed to the author.The opinions and
on
lusions stated in this thesis are expressing the author. They should notbe
onsidered as a pronoun
ement of the National Te
hni
al University of Athens.

�åñßëçøç
Ç äéá�ñéâÞ áõ�Þ ðñïóèÝ�åé Ýíá ëéèáñÜêé áêüìç ó�ç ëýóç �ïõ ðñïâëÞìá�ïò �çò ðáñáãùãÞò ðá-ñÜëëçëïõ êþäéêá ãéá ðñïãñÜììá�á ðïõ ðåñéÝ÷ïõí �Ýëåéá öùëéáóìÝíïõò âñü÷ïõò. Ó�ç óýã÷ñïíçâéâëéïãñáößá, ç ðáñáëëçëïðïßçóç �Ý�ïéùí äïìþí Ý÷åé êá�' áñ÷Þí âáóéó�åß ó�ï ìå�áó÷çìá�éóìütiling, Þ áëëéþò, ìå�áó÷çìá�éóìü õðåñêüìâùí. ¸÷ïõí ðñï�áèåß ìÝèïäïé ãéá �çí áõ�üìá�ç ìå-�á�ñïðÞ �ïõ óåéñéáêïý êþäéêá óå ðáñÜëëçëï. Åðßóçò, Ý÷ïõí ðñï�áèåß åíáëëáê�éêÝò ëýóåéò ãéá�ï ÷ñïíéóìü ìå�áîý åðéêïéíùíßáò êáé õðïëïãéóìþí. ¼ëåò áõ�Ýò ïé ëýóåéò, üìùò, áöïñïýí �çíåê�Ýëåóç �ïõ �åëéêïý ðñïãñÜììá�ïò óå ìßá áðëÞ óõó�ïé÷ßá (
luster) õðïëïãéó�þí.ÓÞìåñá, �á ðëÝïí éó÷õñÜ ìç÷áíÞìá�á, äåí áðï�åëïýí�áé áðü áðëïýò õðïëïãéó�Ýò, áëëÜ áðüðïëõ-åðåîåñãáó�éêÝò ìïíÜäåò (äåß�å �ç ëßó�á �ùí 500 ðéï éó÷õñþí õðïëïãéó�þí �ïõ êüóìïõ �ïõÍïåìâñßïõ 2004). Ôï éäéáß�åñï ÷áñáê�çñéó�éêü �ïõò åßíáé ü�é ïé åðåîåñãáó�Ýò �ïõ ßäéïõ êüìâïõâëÝðïõí êïéíÞ ìíÞìç, åíþ üóïé âñßóêïí�áé óå äéáöïñå�éêïýò êüìâïõò åðéêïéíùíïýí áíáãêáó�éêÜìå áí�áëëáãÞ ìçíõìÜ�ùí. �ñüêåé�áé, äçëáäÞ ãéá äéåðßðåäåò áñ÷é�åê�ïíéêÝò. ÌÝ÷ñé ó�éãìÞò äåíåß÷å ðñï�áèåß êÜðïéá ëýóç ðïõ íá ëáìâÜíåé õðüøç �çí áíïìïéïìïñößá áõ�Þ. ¼ìùò, ç áí�áëëáãÞìçíõìÜ�ùí áêüìç êáé áíÜìåóá ó�ïõò åðåîåñãáó�Ýò ðïõ Ý÷ïõí Üìåóç ðñüóâáóç ó�çí ßäéá ìï-íÜäá ìíÞìçò, áðï�åëåß óçìáí�éêÞ áðþëåéá ÷ñüíïõ ãéá �ï �åëéêü ðñüãñáììá. Ôï ðñüâëçìá áõ�ü,ëïéðüí, áí�éìå�ùðßæå�áé áðïäï�éêÜ ó�çí ðáñïýóá äéá�ñéâÞ. Åðé�õã÷Üíïõìå �çí ìÝ÷ñé ó�éãìÞòâÝë�éó�ç áîéïðïßçóç �ïõ åýñïõò æþíçò êáé �ùí äõíá�ï�Þ�ùí �ùí êáñ�þí äéê�ýïõ. Ôáõ�ü÷ñïíá,ìðïñïýìå áðëÜ êáé ìå óáöÞíåéá íá ïñßæïõìå ìßá ÷ñïíéêÞ äñïìïëüãçóç �ùí õðåñêüìâùí, ðáñÜ�çí áíïìïéüìïñöç åðéêïéíùíßá ìå�áîý �ïõò.¸íá Üëëï èÝìá ðïõ äåí åß÷å ìÝ÷ñé ó�éãìÞò áí�éìå�ùðéó�åß åßíáé áõ�ü �çò êá�áíïìÞò �ùí tiles,Þ õðåñêüìâùí óå åðåîåñãáó�Ýò. Ó�ç âéâëéïãñáößá, üëåò ó÷åäüí ïé ðñïóåããßóåéò èåùñïýí åß�åü�é õðÜñ÷åé áðåñéüñéó�ïò áñéèìüò åðåîåñãáó�þí, åß�å ü�é �ï ìÝãåèïò �ùí tiles åðéëÝãå�áé þó�åïé äéáèÝóéìïé åðåîåñãáó�Ýò íá åßíáé áñêå�ïß. ¼ìùò, óêïðüò �ïõ ìå�áó÷çìá�éóìïý õðåñêüìâùí(tiling) äåí åßíáé ìüíï ç ðáñáëëçëïðïßçóç �ïõ êþäéêá, áëëÜ êáé ç âåë�éó�ïðïßçóç �çò �ïðéêü-�ç�áò �ùí áíáöïñþí óå äåäïìÝíá �çò ìíÞìçò. Ó�çí ðåñßð�ùóç áõ�Þ, ïé äýï ó�ü÷ïé ïäçãïýí óåáí�éêñïõüìåíá áðï�åëÝóìá�á. ÅðåéäÞ ï ÷ñüíïò ðïõ ÷ñåéÜæå�áé ãéá �çí ðñïóðÝëáóç äåäïìÝíùí,

viii
ðïõ äå âñßóêïí�áé ó�çí ãñÞãïñç ìíÞìç �ïõ óõó�Þìá�ïò, äåí åßíáé áìåëç�Ýïò (ìðïñåß íá åßíáé óõ-ãêñßóéìïò, Þ áêüìç êáé ðïëëáðëÜóéïò �ïõ ÷ñüíïõ ðïõ ÷ñåéÜæå�áé ãéá �çí åðåîåñãáóßáò �ïõò), äåíèá Ýðñåðå íá ðáñáìåëçèåß ç ðáñÜìå�ñïò áõ�Þ êá�Ü �çí åðéëïãÞ �ïõ ìå�áó÷çìá�éóìïý õðåñêüì-âùí. Ó�ç äéá�ñéâÞ áõ�Þ, ëïéðüí, äéåñåõíïýìå ìåèüäïõò ãéá �çí êá�áíïìÞ �ùí õðåñêüìâùí ó�éòõðïëïãéó�éêÝò ìïíÜäåò, óå ðåñßð�ùóç ðïõ ï ìå�áó÷çìá�éóìüò õðåñêüìâùí êáé �ï ðëÞèïò �ïõòåßíáé Þäç äåäïìÝíï. �ñïêåéìÝíïõ ïé ìÝèïäïé áõ�ïß íá ìðïñïýí íá åíóùìá�ùèïýí áðïäï�éêÜ óåÝíá åñãáëåßï áõ�üìá�çò ðáñáãùãÞò êþäéêá, åó�éÜæïõìå �çí ðñïóï÷Þ ìáò óå ìåèüäïõò ó�á�éêÞòêá�áíïìÞò �ùí õðïëïãéóìþí, ïé ïðïßïé ðáñïõóéÜæïõí êÜðïéá êáíïíéêü�ç�á.
ËÝîåéò-êëåéäéÜ: Ìå�áó÷çìá�éóìüò tiling, Ìå�áó÷çìá�éóìüò õðåñêüìâùí, Ïìáäïðïßçóç õðåñ-êüìâùí, ÁëëçëïåðéêÜëõøç åðéêïéíùíßáò êáé õðïëïãéóìþí, Õðåñåðßðåäá, Óõó�ïé÷ßåò ðïëõ-åðåîåñ-ãáó�éêþí ìïíÜäùí, �åñéïñéóìÝíïò áñéèìüò êüìâùí.

Abstra
t
This thesis adds some intuition and some pra
ti
al solutions to the well-studied problemof parallelizing nested for-loops. In literature, parallelization of su
h
ode segments has beenbased on supernode, or tiling transformation. There have been proposed some methods forthe automati
 transformation of sequential
ode into parallel one. In addition, the timingbetween
ommuni
ation and
omputation has been studied. However, these solutions
on
ernthe exe
ution of the �nal parallel
ode onto a
luster of single CPU nodes.Nowadays the most powerful
omputing systems are
onsisted of multipro
essor units (seethe Top 500 super
omputer list for November 2004). In su
h super
omputers, pro
essors withinthe same node
an dire
tly a

ess the same memory data, while pro
essors in di�erent nodesshould
ommuni
ate via message passing. No solution had been proposed so far to over
omethis heterogeneity. Message passing among pro
essors inside the same SMP node implies asigni�
ant
ommuni
ation overhead. The above mentioned problem is eÆ
iently alleviated inthis thesis. We pursue and a
hieve a proper utilization of the bandwidth and the possibilities ofthe network
ards. At the same time, we
an simply and expli
itly de�ne a time s
heduling oftiles, in spite of the heterogeneous
ommuni
ation patterns.Another issue, that had not been thoroughly examined so far, is the allo
ation of tiles, or su-pernodes to pro
essors. Almost all approa
hes in literature
onsider either an unlimited numberof pro
essors, or that tile size is properly sele
ted to �t the existing ar
hite
ture. However, tilinghas not been used only for parallelization, but also for a
hieving
a
he lo
ality of data memoryreferen
es. These two goals
on
i
t with ea
h other,
on
erning the tile size sele
tion. Sin
e thetime needed for a

essing data in main memory is not at all negligible (it may be
omparable, oreven a multiple of time needed for pro
essing data), this parameter should not be left out whensele
ting a tiling transformation. In this thesis, we investigate
ertain te
hniques for allo
atingtiles to
omputing nodes, in
ase the tiling transformation, the size of the tile spa
e and of thear
hite
ture are given. We
onsider stati
, regular te
hniques of allo
ation, in order to be ableto in
orporate them eÆ
iently into an automati
 parallel
ode generation tool.

x
Keywords: Supernodes, Loop tiling, Tile grouping, Overlapping
ommuni
ation, PipelinedS
hedules, Hyperplanes, Clusters of SMPs, Fixed number of nodes.

Contents
�åñßëçøç viiAbstra
t ixList of Figures xvList of Tables xixÁí�ß �ñïëüãïõ xxvii1 Introdu
tion 11.1 Motivation . 11.2 Related Work . 21.3 One step ahead: What do we need? . 51.4 Thesis Contribution . 61.5 Thesis Overview . 71.6 Publi
ations . 82 Preliminary Con
epts - Mathemati
al Ba
kground 112.1 Notation . 122.2 Algorithmi
 Model - Nested for-loops . 122.3 Dependen
e Ve
tors . 152.4 Fourier-Motzkin Elimination Method . 172.5 Time S
heduling . 192.5.1 Linear Time S
heduling . 192.6 Loop Transformations . 222.6.1 Linear Loop Transformations . 222.6.2 Tiling or Supernode Transformation . 262.6.3 Tile Dependen
es . 32

xii CONTENTS
2.7 Overlapping vs. Non-Overlapping Exe
ution . 342.7.1 Non-Overlapping Exe
ution Poli
y . 342.7.2 Overlapping Exe
ution Poli
y . 352.8 Hardware High Performan
e Features . 372.8.1 Zero-Copy Proto
ols . 382.8.2 DMA transfers . 393 Automati
 parallel
ode generation for tiled nested loops 413.1 Introdu
tion . 423.2 Generation of Serial Tiled Code . 433.2.1 Enumerating the tiles . 433.2.2 S
anning the points within a tile . 533.2.3 Comparison { Experimental Results . 663.3 Parallelization . 733.3.1 Some more algorithmi
 assumptions . 743.3.2 Computation Distribution . 763.3.3 Data Distribution . 763.3.4 Communi
ation sets . 824 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes) 874.1 An Intuitive Approa
h . 884.2 Grouping Transformation . 904.3 Intuition of our algorithm . 914.4 Determining PG a

ording to the number of CPUs within an SMP node 934.4.1 Linear time s
hedule . 984.4.2 Assigning Tiles to CPUs . 1014.4.3 Generalization: Grouping tiles along an arbitrary dimension of JS 1024.4.4 Optimal sele
tion of mks . 1084.5 Theoreti
al Comparison . 1144.6 Experimental Veri�
ation . 1164.6.1 Experimental platform and algorithm . 1164.6.2 Tuning Parameters . 1174.6.3 Experimental Results . 1184.6.4 S
alability Issues . 1215 S
heduling onto a fixed number of homogeneous SMP nodes 1255.1 Introdu
tion . 1265.2 Cy
li
 assignment to SMPs . 1275.3 Mirror assignment to SMPs . 131

CONTENTS xiii
5.4 Cluster assignment to SMPs . 1345.5 Retiling . 1375.6 Experimental Results . 1395.6.1 Experimental Platform . 1395.6.2 Experimental Data: Re
tangular Tile Spa
es 1395.6.3 Simulation Data . 1435.7 Blo
k-
y
li
 assignment to SMPs . 1465.8 Implementation issues for non-re
tangular tile spa
es 1485.8.1 Assigning as many neighboring tiles as possible to the same SMP node . . 1495.8.2 Evi
ting deadlo
ks . 1505.8.3 Simulation Data . 1536 Con
lusion 167Appendi
es 171A Summary of Notations 173B Algorithmi
 Model - Summary of assumptions 175C Simple Mathemati
al Formulas 177Bibliography 181

xiv CONTENTS

List of Figures
1.1 The BlueGene/L Ar
hite
ture - No 1 in the 24th Top500 Super
omputer list . . 51.2 The Earth Simulator Ar
hite
ture - No 3 in the 24th Top500 Super
omputer list 62.1 Example 2.1 - Graphi
al representation of 2-dimensional iteration spa
es onto Zn 152.2 Lexi
ographi
 order of iterations for the iteration spa
e of Example 2.1(3). 162.3 Example 2.2 - Graphi
al representation of
ow dependen
es 182.4 Example 2.3 - Time S
hedule produ
ed by linear s
heduling ve
tor Π = [1 1]. . . 212.5 Example 2.3 - Time S
hedule produ
ed by linear s
heduling ve
tor Π = [2 3]. . . 222.6 Graphi
al representation of an inter
hange transformation 232.7 Graphi
al representation of a reversal transformation 242.8 Graphi
al representation of a skewing transformation 252.9 Unimodular and non-unimodular transformations. 262.10 Fine-grained parallelism. 272.11 Coarse-grained parallelism. 282.12 Tiling Transformation. 292.13 Constru
tion of Tiling Matri
es. 302.14 When the
lass of dependen
e matrix D is less than n 312.15 Validity of a tiling transformation. 332.16 Non-overlapping Exe
ution Poli
y . 352.17 Overlapping Exe
ution Poli
y. 362.18 Single-Copy Proto
ol and pa
ketization pro
ess 382.19 Lo
ked and memory mapped \RAM devi
e" for SCI
ommuni
ations 393.1 Automati
 parallel
ode generation for tiled iteration spa
es. 433.2 Example 3.1: Representation of the spa
es used. 453.3 Expanding iteration spa
e bounds to in
lude all tile origins. 513.4 Expanding iteration spa
e bounds to in
lude all tile origins. 523.5 Example 3.2: Expanding iteration spa
e bounds to in
lude all tile origins. 54

xvi LIST OF FIGURES
3.6 S
anning the iterations of a tile. 593.7 Traverse the TIS with a non-unimodular transformation. 603.8 Steps and initial o�sets in TTIS derived from matrix H̃ ′ 623.9 Average tiling overhead fa
tors for 3 −D problems 693.10 Tiling overhead fa
tors for real appli
ations . 713.11 Determining
ommuni
ation sets in the TIS and TTIS. 743.12 Lo
al data spa
e LDS and transformed tile iteration spa
e TTIS 773.13 Relations between DS, Jn and LDS . 813.14 Communi
ation among pro
essors. 834.1 Exe
ution of tiles on single-CPU nodes. 884.2 Exe
ution of tiles on SMP nodes with 2 CPUs ea
h. 894.3 Verti
al grouping. 894.4 Hyperplane grouping. 904.5 Set of tiles assigned to an SMP node. 914.6 Groups of tiles exe
uted simultaneously in an SMP node. 924.7 Constru
ting the inverse grouping matrix. 934.8 Example 4.1 - Tile spa
e. 954.9 Example 4.1 - Group spa
e. 964.10 Example 4.2 - Tile spa
e. 974.11 Example 4.2 - Group spa
e. 974.12 Example 4.4 - 2 × 1 CPUs per SMP node - Overlapping exe
ution. 1034.13 Example 4.4 - 2 × 1 CPUs per SMP node - Non-overlapping exe
ution 1044.14 Example 4.5 - 4 × 1 CPUs per SMP node - Overlapping exe
ution. 1064.15 Example 4.5 - 4 × 1 CPUs per SMP node - Non-overlapping exe
ution 1084.16 Example 4.6 - 2 × 2 CPUs per SMP node. 1104.17 Example 4.6 - 2 × 2 CPUs per SMP node. 1114.18 Communi
ation load of a tile. 1114.19 Communi
ation load of a group. 1144.20 In order to exe
ute at the same time tiles grouped together by a verti
al groupings
heme, we should further divide them into sub-tiles and exe
ute some of themin parallel, a

ording to an intra-tile hyperplane s
heduling. 1144.21 Verti
al grouping - Tile exe
ution time in respe
t to the number of sli
es a tile is
ut . 1184.22 Verti
al grouping - Zoom in the minimum area of the plot of Figure 4.21 1184.23 Dire
tions and sour
e/destination nodes of message ex
hanges for an SMP nodewith 2 CPUs . 1204.24 Experimental Results: 16 × 16 × 1024k iteration spa
e 120

LIST OF FIGURES xvii
4.25 Experimental Results: 24 × 24 × 1024k iteration spa
e 1214.26 Experimental Results: 32 × 32 × 1024k iteration spa
e 1214.27 Experimental Results: 32 × 32 × 512 iteration spa
e 1224.28 Experimental Results: 48 × 48 × 512 iteration spa
e 1225.1 Cy
li
 assignment to SMP nodes. 1275.2 Cy
li
 s
heduling when there is not a
tual la
k of pro
essors. 1295.3 Cy
li
 s
heduling when there is la
k of pro
essors. 1305.4 Mirror assignment to SMP nodes. 1325.5 Cluster assignment to SMP nodes. 1345.6 Clustering
ommuni
ation . 1375.7 Retiling. 1385.8 Experimental Data: Tile Size 32 × 32 × 32 . 1405.9 Experimental Data: Tile Size 128 × 32 × 32 . 1425.10 Experimental Data: Tile Size 256 × 32 × 32 . 1435.11 Communi
ation among SMPs . 1435.12 Simulation Data: Tile Spa
e · · · × 16 × 16 on a grid of 4 × 4 nodes with 2 × 2CPUs ea
h . 1445.13 Simulation Data: Tile Spa
e · · · × 22 × 22 on a grid of 4 × 4 nodes with 2 × 2CPUs ea
h . 1455.14 Simulation Data: Tile Spa
e · · · × 16 × 16 on a grid of 2 × 2 nodes with 4 × 4CPUs ea
h . 1455.15 Blo
k-
y
li
 assignment to SMP nodes. 1475.16 Allo
ating a non-re
tangular tile spa
e to pro
essors. 1505.17 Time distan
e between the arrival of an event and the use of data it
arries. . . . 1535.18 Deadlo
ks in the exe
ution of non-re
tangular tile spa
e. 1545.19 Simulation Data: Exe
ution of ADI onto a shared memory multipro
essor. 1565.20 Simulation Data: Exe
ution of ADI onto a
luster of 2 SMP nodes, following theoverlapping exe
ution poli
y . 1575.21 Simulation Data: Exe
ution of ADI onto a
luster of 4 SMP nodes, following theoverlapping exe
ution poli
y . 1585.22 Simulation Data: Exe
ution of ADI onto a
luster of 8 SMP nodes, following theoverlapping exe
ution poli
y . 1595.23 Simulation Data: Exe
ution of ADI onto a
luster of 2 SMP nodes, following thenon-overlapping exe
ution poli
y . 1605.24 Simulation Data: Exe
ution of ADI onto a
luster of 4 SMP nodes, following thenon-overlapping exe
ution poli
y . 161

xviii LIST OF FIGURES
5.25 Simulation Data: Exe
ution of ADI onto a
luster of 8 SMP nodes, following thenon-overlapping exe
ution poli
y . 162

List of Tables
3.1 Example iteration spa
es . 663.2 Fourier-Motzkin row operations and
ompilation time for 2D algorithms 673.3 Fourier-Motzkin row operations and
ompilation time for 3D algorithms. 683.4 Average row operations and
ompilation time for 3D algorithms 693.5 Tiling overhead fa
tors (TOF) for 2 −D problems 693.6 Tiling overhead fa
tors (TOF) for 3 −D problems. 703.7 Performan
e for real appli
ations . 713.8 Using fun
tion loc() to lo
ate ~j ∈ Jn in the LDS of a pro
essor 813.9 Using fun
tion loc−1() to lo
ate ~j′′ ∈ LDS of pro
essor ~pid in Jn 824.1 Example 4.1 . 964.2 Example 4.2 . 984.3 Example 4.4 - 2 × 1 CPUs per SMP node - Overlapping exe
ution 1044.4 Example 4.4 - 2 × 1 CPUs per SMP node - Non-overlapping exe
ution 1054.5 Example 4.5 - 4 × 1 CPUs per SMP node - Overlapping exe
ution. 1074.6 Example 4.5 - 4 × 1 CPUs per SMP node - Non-overlapping exe
ution 1094.7 Example 4.6 - 2 × 2 CPUs per SMP node - Overlapping exe
ution 1124.8 Example 4.6 - 2 × 2 CPUs per SMP node - Non-overlapping exe
ution 1134.9 Implementation of the non-overlapping s
heme 1194.10 Implementation of the overlapping s
heme . 1194.11 Implementation of the verti
al vs. hyperplane grouping 1195.1 Implementation of s
hedules (
y
li
 assignment, mirror assignment,
luster as-signment to SMP nodes) when the tile spa
e is re
tangular 1415.2 Exe
ution s
hemes implementation (overlapping vs. non-overlapping) using theGM low level message passing system . 1425.3 Implementation of the blo
k-
y
li
 assignment s
hedule when the tile spa
e isre
tangular . 149

xx LIST OF TABLES
5.4 Implementation of the
y
li
 assignment s
hedule when the tile spa
e is not re
-tangular . 1515.5 Implementation of the
luster assignment s
hedule when the tile spa
e is notre
tangular . 1515.6 Implementation of the mirror assignment s
hedule when the tile spa
e is notre
tangular . 1525.7 Implementation of the blo
k-
y
li
 assignment s
hedule when the tile spa
e is notre
tangular . 1525.8 ADI - Simulation Data . 1585.9 ADI - Simulation Data . 1635.10 SOR - Simulation Data . 1645.11 SOR - Simulation Data, following the overlapping exe
ution poli
y 1645.12 SOR - Simulation Data, following the non-overlapping exe
ution poli
y 165

Áí�ß �ñïëüãïõ
Ç ðáñïýóá äéäáê�ïñéêÞ äéá�ñéâÞ åêðïíÞèçêå ó�ïí ÔïìÝá Ôå÷íïëïãßáò �ëçñïöïñéêÞò êáéÕðïëïãéó�þí, �çò Ó÷ïëÞò Çëåê�ñïëüãùí Ìç÷áíéêþí êáé Ìç÷áíéêþí Õðïëïãéó�þí, �ïõ ÅèíéêïýÌå�óüâéïõ �ïëõ�å÷íåßïõ. �åñéëáìâÜíåé �çí Ýñåõíá êáé �á óõìðåñÜóìá�á ðïõ ðñïÝêõøáí êá�Ü�ç äéÜñêåéá �ùí ìå�áð�õ÷éáêþí óðïõäþí ìïõ ó�ï Åñãáó�Þñéï Õðïëïãéó�éêþí Óõó�çìÜ�ùí �çòó÷ïëÞò áõ�Þò.Ó�ï óçìåßï áõ�ü èá Þèåëá íá åêöñÜóù �éò åéëéêñéíåßò åõ÷áñéó�ßåò ìïõ óå Ýíá ðëÞèïò áíèñþ-ðùí, ðïõ ìå âïÞèçóáí ïõóéáó�éêÜ ó�çí ðñáãìá�ïðïßçóç �çò åñãáóßáò áõ�Þò. �ñþ�á áðü üëïõòèá Þèåëá íá åõ÷áñéó�Þóù �ïí åðéâëÝðïí�á êáèçãç�Þ ìïõ, �áíáãéþ�ç ÔóáíÜêá, åðåéäÞ, üí�áòðñïð�õ÷éáêÞ öïé�Þ�ñéá, åêåßíïò ðñþ�ïò ìå Ýöåñå óå åðáöÞ ìå �ï ÷þñï ó�ïí ïðïßï áñãü�åñá áðï-öÜóéóá íá óõíå÷ßóù �éò óðïõäÝò ìïõ ùò ìå�áð�õ÷éáêÞ öïé�Þ�ñéá. Ôïí åõ÷áñéó�þ éäéáß�åñá åðåéäÞìå åðÝëåîå ãéá óõíåñãÜ�ç �ïõ, ãéá �éò ÷ñÞóéìåò ãíþóåéò ðïõ ìïõ ìå�Ýäùóå, ãéá �çí ïéêåéü�ç�áðïõ ìïõ åìðíÝåé, áëëÜ ðåñéóóü�åñï ãéá �çí åìðéó�ïóýíç ðïõ ìïõ Ýäåéîå óå üëá �á èÝìá�á.Åðßóçò, èá Þèåëá íá åõ÷áñéó�Þóù èåñìÜ �ïí êáèçãç�Þ �åþñãéï �áðáêùíó�áí�ßíïõ, ìÝëïò�çò �ñéìåëïýò óõìâïõëåõ�éêÞò åðé�ñïðÞò ìïõ êáé åðéêåöáëÞ �ïõ åñãáó�çñßïõ, ãéá �çí áãÜðç �ïõ,�éò óõìâïõëÝò �ïõ, ãéá �ç äéÜèåóÞ �ïõ íá áó÷ïëçèåß ìå êá�áíüçóç ìå ïðïéïäÞðï�å ðñüâëçìÜ ìáò.Éäéáß�åñç áíáöïñÜ èá Þèåëá íá êÜíù ó�ï �ñß�ï ìÝëïò �çò óõìâïõëåõ�éêÞò åðé�ñïðÞò ìïõ,�ïí åðßêïõñï êáèçãç�Þ Íåê�Üñéï Êïæýñç. ¹�áí ï Üíèñùðïò ðïõ êáèüñéóå �çí êá�åýèõíóç �çòÝñåõíÜò ìïõ, ðïõ áó÷ïëÞèçêå ïõóéáó�éêÜ ìå �çí ðïñåßá êáé �á ðñïâëÞìá�á ðïõ áí�éìå�þðéóá êá�Ü�ç äéÜñêåéá �ùí óðïõäþí ìïõ, ðïõ áíÝêáìð�å �ï çèéêü ìïõ óå äýóêïëåò åñåõíç�éêÜ ðåñéüäïõò,ðïõ öñüí�éóå íá Ý÷ù äéáèÝóéìï �ïí åîïðëéóìü ðïõ ÷ñåéáæüìïõí. �Ýñá, üìùò, áðü �á êáèáñÜåðéó�çìïíéêÜ èÝìá�á, äßðëá �ïõ ðÞñá áîÝ÷áó�á ìáèÞìá�á æùÞò ìå �éò ðïëýùñåò óõæç�Þóåéò ðïõåß÷áìå ìáæß �ïõ. Ìïõ Ýìáèå íá ðéó�åýù ó�ïí åáõ�ü ìïõ, íá èÝ�ù êáé íá ðå�õ÷áßíù ó�ü÷ïõò, íáåßìáé ðéï áíïé÷�Þ áðÝíáí�é óå áíèñþðïõò ìå åí�åëþò äéáöïñå�éêÞ íïï�ñïðßá êáé åðéäéþîåéò. ¼ëááõ�Ü åßíáé éäéáß�åñá óçìáí�éêÜ, ü÷é ìüíï ãéá �çí åðáããåëìá�éêÞ áðïêá�Üó�áóÞ åíüò áíèñþðïõ,áëëÜ êáé ãéá �çí ïéêïãåíåéáêÞ êáé êïéíùíéêÞ æùÞ �ïõ.ÂÝâáéá, ðÝñá áðü �ïõò êáèçãç�Ýò ìïõ, èá Þ�áí ðïëý ìåãÜëç ðáñÜëåéøç íá ìçí áíáöåñèþêáé ó�á õðüëïéðá ìÝëç �ïõ åñãáó�çñßïõ. Êá�' áñ÷Þí, ï �éþñãïò �êïýìáò Þ�áí Ýíáò ìéêñü�åñïòêáèçãç�Þò ìïõ. Ôïí åõ÷áñéó�þ éäéáß�åñá, ü÷é ìüíï ãéá �ç óõìâïëÞ �ïõ ó�çí åñåõíç�éêÞ äïõëåéÜìïõ, áëëÜ êáé ãéá�ß ìå �ï ðáñÜäåéãìÜ �ïõ óêéáãñÜöçóå �ï ðñü�õðï óõìðåñéöïñÜò åíüò áíèñþðïõðïõ Ý÷åé âñåé �ç óùó�Þ éóïññïðßá ìå�áîý åðáããåëìá�éêÞò êáé êïéíùíéêÞò æùÞò, ðïõ îÝñåé íá äßíåé

ó�á ðñüóùðá êáé �éò êá�áó�Üóåéò �çí ðñïóï÷Þ ðïõ �ïõò áñìüæåé. Éäéáß�åñç ãéá ìÝíá Þ�áí êáé çó÷Ýóç ðïõ áíÝð�õîá ìå �ï Íßêï Äñïóéíü. Ôïí åõ÷áñéó�þ, ü÷é ìüíï ãéá �ç óõíåñãáóßá ìáò óååñåõíç�éêÜ èÝìá�á, áðü �çí ïðïßá áðïêüìéóá ðïëý�éìåò ãíþóåéò, áëëÜ êáé ãéá �éò óõæç�Þóåéò ìáòóå èÝìá�á ðïõ êïõâåí�éÜæïí�áé ìüíï ìå�áîý ðñáãìá�éêþí ößëùí.Ó�ç óõíÝ÷åéá, ïöåßëù íá åõ÷áñéó�Þóù èåñìÜ üëá �á ðáéäéÜ ìå �á ïðïßá óõíåñãÜó�çêá, �ïí ¶ñçÓù�çñüðïõëï, �ï �éþñãï ÔóïõêáëÜ, �ï ÂáããÝëç Êïýêç. ×ùñßò �ç óõìâïëÞ �ïõò, ç äéäáê�ïñéêÞäéá�ñéâÞ ìïõ èá Þ�áí óßãïõñá ðïëý ö�ù÷ü�åñç. Äõó�õ÷þò, èá ìáêñçãïñïýóá ðïëý áí ó�åêüìïõíóå êÜèå Ýíá áðü �á ìÝëç �ïõ åñãáó�çñßïõ îå÷ùñéó�Ü. �áñüëá áõ�Ü, ðñÝðåé íá áíáöÝñù ü�é ïÁí�þíçò ÆÞóéìïò, ï Áí�þíçò ×áæÜðçò, ï ÊïñíÞëéïò Êïýñ�çò, ï �éþñãïò ÂåñõãÜêçò, ï ÍßêïòÁíáó�üðïõëïò, ðñïóèÝ�ïõí ï êáèÝíáò ìå �ïí �ñüðï �ïõ, ìå �éò ãíþóåéò êáé �ï ÷áñáê�Þñá �ïõ,ìßá éäéáß�åñç íü�á ó�çí êïõë�ïýñá �ïõ åñãáó�çñßïõ. Áóöáëþò, äåí ðñÝðåé íá åííïçèåß ü�é �áðáéäéÜ ðïõ äåí áíáöÝñèçêáí ïíïìáó�éêÜ Ý÷ïõí ìéêñü�åñç óõìâïëÞ ó�ï öéëéêü êëßìá óõíåñãáóßáòêáé ó�çí ðåñéññÝïõóá ãíþóç �ïõ åñãáó�çñßïõ.Åðßóçò, Ýíá �åñÜó�éï åõ÷áñéó�þ ãéá áíáñßèìç�ïõò ëüãïõò ïöåßëù ó�çí áäåëöÞ ìïõ êáé õðï-øÞöéá äéäÜê�ïñá �ïõ åñãáó�çñßïõ, Åõáããåëßá ÁèáíáóÜêç. ¼÷é ìüíï ãéá�ß áðü �á ðáéäéêÜ ìïõ÷ñüíéá Þ�áí ç êáëý�åñç ößëç ìïõ, ü÷é ìüíï åðåéäÞ ìå áêïëïýèçóå êáé ìå óõí�ñüöåõóå óå üëá �áóçìáí�éêÜ âÞìá�á �çò æùÞò ìïõ, ü÷é ìüíï åðåéäÞ Þ�áí ðÜí�á ï ðñþ�ïò Üíèñùðïò ðïõ èá áó÷ï-ëïýí�áí ìå ïðïéáäÞðï�å áíçóõ÷ßá ìïõ. ÁëëÜ êáé åðåéäÞ ìå �çí åíåñãÞ ðáñïõóßá �çò êáèüñéóå,óå âáèìü ðáñáðëÞóéï ìå �ïõò ãïíåßò ìïõ, �çí ðñïóùðéêü�ç�Ü ìïõ.ÔÝëïò, åõ÷áñéó�þ èåñìÜ �ï ÊïéíùöåëÝò ºäñõìá ÁëÝîáíäñïò ÙíÜóçò ãéá �çí ïéêïíïìéêÞ ó�Þ-ñéîç ðïõ ìïõ ðáñåß÷å ìÝóù ìßáò õðï�ñïößáò ìå�áð�õ÷éáêþí óðïõäþí.Ç åñãáóßá áõ�Þ áöéåñþíå�áé ó�çí ïéêïãÝíåéÜ ìïõ êáé óå üóïõò áðï�åëïýí Ýíá åõ�õ÷Ýò áíá-ðüóðáó�ï êïììÜ�é �çò æùÞò ìïõ.

1Introdu
tion1.1 MotivationTiling, or supernode transformation has been widely used in parallel pro
essing for restru
turingnested for-loop
ode segments. When applying tiling, neighboring iterations are grouped to-gether into a tile, or supernode. Thereupon, ea
h tile is treated as one
omputation unit. Thatis, we s
hedule tiles instead of iterations, we de
ide whi
h tiles will be assigned to a pro
essorand so on. Therefore, we a
hieve to de
rease the total
ommuni
ation load of the
ode segmentas follows:
• Assuming that iterations of the initial
ode segment may be assigned to any pro
essor ofthe parallel ar
hite
ture, the
ommuni
ation load implied may be vast in
omparison to the
omputation load. When applying tiling, we for
e neighboring iterations to be exe
utedonto the same pro
essor. Therefore, the
ommuni
ation requirements among them areeliminated.
• In message passing interfa
es, designed for distributed memory
omputing systems, the
ost of initializing a data transfer is not negligible. When applying tiling, apart fromgrouping iterations, we also group the resulting data transfers. Thus, we may initializeonly one message per tile per
ommuni
ation dire
tion, redu
ing in this way the numberof messages and the
ommuni
ation startup
ost.A lot of work has been
ondu
ted in this area,
on
erning the sele
tion of the optimal tilingtransformation. Resear
hers have
on
luded that, on the one hand, re
tangular tiling is simple.Thus, both the appli
ation of the tiling transformation and the exe
ution of the �nal tiled
odeis eÆ
ient [TX00℄. On the other hand, non-re
tangular tiling may be more appropriate for aspe
i�

ode segment [HS02℄, [HCF03℄. Thus, if it is properly applied, it may give the peakperforman
e [GDAK02a℄.

2 Introdu
tion
As far as parallel pro
essing is
on
erned, the size and shape of tiles is mainly sele
ted so as tominimize the
ommuni
ation overhead. The resulting tiling transformation seems to be the samewhen either a distributed [Xue97a℄ or a shared memory [RR02℄ system is aimed. Consequently,when a multilevel parallel ar
hite
ture is involved, the optimal tiling transformation is just thesame.However, when applying a tiling transforation, tile shape and size are not the only
on
erns.One should also determine a time s
hedule, for both
omputations and
ommuni
ation. Thisproblem has also been addressed when either a distributed or a shared memory ar
hite
ture isinvolved. It has not been addressed for a multilevel parallel ar
hite
ture, su
h as a
luster ofshared memory multipro
essors (SMPs). In this thesis, a time s
hedule is produ
ed, whi
h takesinto a

ount the
ommuni
ation requirements among pro
essors, whi
h may reside either in thesame or in di�erent SMP nodes.On
e a tiling transformation has been applied onto a nested for-loop
ode segment, and atime s
heduling has been produ
ed, one may assume that it
an be really implemented onto aparallel ar
hite
ture. In fa
t, this is not always true. The number of pro
essors of an existingplatform may be less than the number of pro
essors required for the appli
ation of a times
hedule. Although in literature a lot of papers deal with the problem of s
heduling onto a�xed number of pro
essors, very few of them are appli
able on nested for-loops, that
annotbe partitioned into independent sub-spa
es. In this thesis �ve alternative stati
 s
hemes, fors
heduling a tile spa
e and assigning tiles to the pro
essors of an existing parallel ar
hite
ture,are proposed.1.2 Related WorkA few years ago the
onstant in
rease of the exe
ution speed of programs was mainly basedon the
lo
k frequen
y in
rease. In 1980's, both a
ademia and industry realized that it wasmeaningless to further promote the
lo
k speed if they
ould not feed the pro
essor with datafrom memory [PH94℄, [HP03℄. Their e�orts
on
entrated onto minimizing the distan
e betweenthe pro
essor and memory data, using
a
he memories. They went on in
reasing the
lo
kspeed, but at the same time they in
reased the size and bandwidth of
a
hes, they improved thealgorithms used for storing and sear
hing data in them.Nowadays, te
hnology seems to have approa
hed the
ore. A further in
rease of either the
lo
k speed or the
a
he bandwidth is sustained by physi
al restri
tions, su
h as the speed oflight and the minimum distan
es that should exist inside a
hip, so as ele
tri
al signals do notinterfere with ea
h other. Therefore, the only notion that
an supply
omputer performan
ewith a thrust seems to be parallel pro
essing.However, without an intervention from the programmer, parallel pro
essing may have animpa
t only when several independent programs are to be exe
uted simultaneously. A minor

1.2 Related Work 3
intervention is required when a single program
an be partitioned into independent or looselydependent tasks. What happens when we are interested in speeding up a single program, whi
h
annot be partitioned into independent regions? Then, a thorough analysis of data dependen
es[Ban88℄, [Pug92℄ is required, so as to de
ide whi
h tasks
ould be eÆ
iently parallelized.Nested for-loops
an be pla
ed among the most
riti
al
ode segments, whi
h deserve paral-lelization. They usually impose a signi�
ant overhead to the total program exe
ution, sin
e theyiterate many times over the same statements. In order to a
hieve the maximum a

eleration,one of the key issues to be
onsidered is minimization of the
ommuni
ation overhead. Paperselaborating on this issue
an be divided into two main
ategories
orresponding to �ne grainparallelization and
oarse grain parallelization.As far as �ne grain parallelism is
on
erned, the
ommuni
ation overhead is redu
ed byapplying methods that group together neighboring
hains of iterations [KCN91℄, [SC95℄, whilepreserving the optimal hyperplane s
hedule [DGK+00℄, [ST91℄, [TKP00℄. The obje
tive of par-titioning the initial iteration spa
e into
hains of iterations has always been the minimizationof inter-
hain dependen
es. Thereupon, some
hains may be grouped together and exe
uted inthe same pro
essor, aiming again to redu
e the inter-pro
essor dependen
es.As far as
oarse grain parallelism is
on
erned, resear
hers have dealt with the problem ofalleviating the
ommuni
ation overhead by applying the supernode or tiling transformation.Supernode partitioning of the iteration spa
e was initially proposed by Irigoin and Triolet in[IT88℄. They introdu
ed the initial model of loop tiling and gave
onditions for a tiling trans-formation to be valid. Later, Ramanujam and Sadayappan in [RS92℄ showed the equivalen
ebetween the problem of �nding a set of extreme ve
tors for a given set of dependen
e ve
torsand the problem of �nding a tiling transformation that produ
es valid, deadlo
k-free tiles. Theproblem of determining the optimal shape was surveyed, and more a

urate
onditions were alsogiven by others, as in [BDRR94℄, [HS02℄, [HCF03℄. Some of these approa
hes aim at minimizingthe amount of data transferred through a message passing interfa
e [Xue97a℄. Some more ofthem are appli
able on a shared memory ar
hite
ture and pursue the minimum amount of datato be a

essed by more than one pro
essors [AKN95℄, [RR02℄. The rest of them attempt tominimize the time ea
h pro
essor remains idle waiting for the ne
essary data to be available,before going on with the
omputations assigned to it [DDRR97℄, [HCF97℄, [HCF99℄. All threeapproa
hes result to the same mathemati
al formulas for the
al
ulation of the optimal tilingtransformation.S
heduling tiled iteration spa
es onto parallel ar
hite
tures is another important issue, whi
hhas been partially addressed in literature. Dion et al. [DRR96℄ and Rastello et al. [RRP03℄have redu
ed the total run-time by properly s
heduling the iterations inside a tile. They assumethat a tile exe
ution is non-atomi
 and ea
h data element is sent to pro
essors that will need it,as soon as it is
omputed. Although su
h an approa
h may be pra
ti
al on a VLSI pro
essorarray, it will not be eÆ
ient on a modern
luster, where the startup laten
y of a message
annot

4 Introdu
tion
be ignored, imposing
oarse-grain
ommuni
ation.Although s
heduling of tasks on a
luster of workstations seems to be a well elaboratedidea [CKE+04℄, in fa
t very few approa
hes have taken into a

ount the regularity of nestedfor-loops. Several of them [SG97℄, [Sak97℄, [HP96℄ deal with the distribution of loop iterationsto pro
essors, in spe
ial
ases, when the iteration spa
e
an be de
omposed to regions, that
an be parallelized with no
ommuni
ation or syn
hronization among pro
essors. However, thisis not always the
ase. As
on
luded by [LL98℄, the dependen
es among iterations may notallow the appli
ation of su
h a s
heduling. In [ML94℄ a run-time s
heduling is presented, whi
hminimizes
ommuni
ation and syn
hronization overhead. In [ID98℄, [ZLP97℄, a dynami
 load-balan
ing s
heduling algorithm is presented, with a
ombination of
ompile-time and run-timesupport (hybrid
ompile and run-time pro
ess). However, as argued in [TN93℄, dynami
, orrun-time s
heduling a
hieves a better load balan
e when the
omputation load of iterations isunevenly distributed. In addition, it is appli
able if the loop bounds are unknown at
ompiletime. Stati
, or
ompile-time s
heduling is more appropriate for uniformly distributed loops,following the algorithmi
 model of this thesis.As far as the exe
ution of tiles on a
luster of PCs is
on
erned, all
onventional approa
hes[ABRY03℄, [ABR96℄, [HS98℄, [OSKO95℄, [RS92℄
onsider that ea
h pro
essor exe
utes all tilesalong a spe
i�
 dimension, by interleaving
omputation and
ommuni
ation phases. All pro
es-sors �rst re
eive data, then
ompute, and �nally send result data to neighbors in expli
itly dis-tin
t phases, a

ording to the hyperplane s
heduling ve
tor. Taking into a

ount that modernnetwork interfa
es allow for
on
urrent
ommuni
ation and
omputation, in [GSK01℄ an alter-native method for the problem of s
heduling the tiles to single CPU nodes was proposed. Theproposed method a
ts like enhan
ing the performan
e of a pro
essor's datapath with pipelining[PH94℄, be
ause a pro
essor
omputes its tile at k time step and
on
urrently re
eives data fromall neighbors to use them at k + 1 time step and sends data produ
ed at k − 1 time step. Su
ha pipelined exe
ution s
heme was proven [STK02℄ to nearly double the performan
e of the al-gorithms, provided that we use modern NICs (Network Interfa
e Cards),
apable of performing
ommuni
ation without annoying the CPU, and advan
ed
ommuni
ation proto
ols (i.e. VIA)with Zero-Copy [CTHI98℄, DMA support and User-Level [Blu96℄
hara
teristi
s.Although the tiling transformation had been so widely studied, in pra
ti
e it was almostunattainable to implement the proposed methods in real appli
ations. The overhead for pro-du
ing the parallel
ode was almost prohibitive. In [AL93℄, Amarasinghe and Lam presenteda method for automati
ally produ
ing parallel SPMD
ode, based on the mathemati
al rep-resentation of the iteration spa
e, the data spa
e and the
ommuni
ation data, using a set ofinequalities. In [TX00℄, Tang and Xue presented a
omplete framework for produ
ing SPMD
ode for distributed memory parallel ar
hite
tures. However, their approa
h
on
erns only re
-tangular tiling transformations. Finally, in [GAK03℄, [GDAK02a℄ a
omplete framework hasbeen presented for automati
ally produ
ing parallel
ode for arbitrarily tiled nested for-loops.

1.3 One step ahead: What do we need? 5
This method, apart from enhan
ing the eÆ
ien
y of the �nal parallel
ode, aims at redu
ing theoverhead of the automati
 parallelization.1.3 One step ahead: What do we need?Nowadays the most powerful
omputing systems are
onsisted of multi-level parallel ar
hite
-tures, su
h as a
luster of Shared-Memory Multipro
essors. The top 5
omputing systemsannoun
ed in the 2004 Super
omputer Conferen
e (SC2004) [TOP℄ in Pittsburgh (BlueGene/L,Columbia, Earth Simulator, MareNostrum, Thunder), are all based on a multi-level parallelar
hite
ture (see, for example, Figures 1.1 and 1.2).

Figure 1.1: The BlueGene/L Ar
hite
ture - No 1 in the 24th Top500 Super
omputer listThe method presented in [GSK01℄, [STK02℄ had been applied only on
lusters of single CPUnodes. If applied on a
luster of SMP nodes (Symmetri
 Multi-Pro
essors), it
ould not take into
onsideration the fa
t that, among pro
essors of the same node, whi
h
an dire
tly
ommuni
atewith ea
h other through the node's shared memory, there is no need for message inter
hange,in order to ex
hange data. This fa
t has not been taken into a

ount in [MA01℄ either, whi
haims at s
heduling tiles on a
luster of SMP nodes. The result of su
h a
onsideration may beunne
essary transfers from the pro
essing unit to the network
ard and vi
e versa, whi
h will
onsume a portion of the intra-node
ommuni
ation bandwidth. In the best
ase, when the
ompiler
an dete
t and prevent su
h unne
essary
ommuni
ation between the pro
essor andthe network
ard, it will not evi
t unne
essary transfers among the shared and private spa
e of

6 Introdu
tion

Figure 1.2: The Earth Simulator Ar
hite
ture - No 3 in the 24th Top500 Super
omputerlistthreads inside the same SMP node [DK04℄.In this thesis, as in [AST+05℄, [ASTK02b℄, [ASTK02a℄, the method proposed in [GSK01℄,[STK02℄ is applied on
lusters of SMP nodes. For this purpose, we group together tiles, whi
hshould be simultaneously exe
uted by pro
essors of the same node. Thus, we annihilate theneed for
ommuni
ation among pro
essors of the same node. In the sequel, in order to s
hedulethe groups of tiles, whi
h have arisen, we
an make use of the overlapping
ommuni
ation-
omputation model, proposed in [GSK01℄, [STK02℄.Unfortunately, the subsequent exe
ution s
heme (similar to its parent s
hemes proposedin [HS98℄, [GSK01℄ and the automati
 s
hedules produ
ed when using a
ode generation tool[GDAK02a℄) preassumes an unlimited number of pro
essing nodes, or that the tile size has beensele
ted so that the number of nodes needed is less than or equal to the nodes available. Of
ourse,it is not always true. The tile size may often be sele
ted so as to minimize the
ommuni
ationoverhead [Xue97a℄, [AKN95℄, [RR02℄ or maximize memory data referen
es lo
ality [KRC99℄,[LRW91℄, [WL91a℄, [PHP03℄, [MHCF98℄. Thus, we need an eÆ
ient method to allo
ate thetasks to a prede�ned number of pro
essors. In this thesis, as in [AKK04℄, [AKK03℄, somedi�erent assignment s
hemes for s
heduling tiles onto a
luster with a �xed number of SMPnodes, will be proposed.1.4 Thesis ContributionThe
ontribution of this thesis,
an be mainly fo
used on the following two issues:1. A theoreti
 model is supplied for s
heduling tiles onto a
luster of SMP nodes, using ei-ther the overlapping or the non-overlapping exe
ution poli
y, as des
ribed in [GSK01℄,[STK02℄, [HS98℄. This is attained by grouping together tiles, whi
h should be simultane-ously exe
uted by pro
essors of the same node. Thus, the need for
ommuni
ation amongpro
essors of the same node is annihilated. They should only syn
hronize with ea
h other

1.5 Thesis Overview 7
using a barrier or a semaphore. In addition, the subsequent
ommuni
ation among pro
es-sors in di�erent SMP nodes
an be similarly grouped, whi
h further redu
es the overall
ommuni
ation overhead of a
ode segment.2. In order to apply all above mentioned te
hniques and automati

ode generation tools[Gou03℄ onto a
luster with a �xed number of nodes, �ve alternative assignment s
hemesfor s
heduling tiles are proposed. The advantages and disadvantages of ea
h one are theo-reti
ally and experimentally investigated. Thus, the guidelines for sele
ting the appropriateassignment s
heme for ea
h tile spa
e, are provided.1.5 Thesis OverviewIn Chapter 2 of this thesis, some basi
 preliminary
on
epts and the mathemati
al ba
kgroundrequired for the
omprehension of our methodology are presented. First of all, some mathe-mati
al symbols used throughout the thesis are de�ned. Then, we brie
y des
ribe the model ofalgorithms, whi
h
an be parallelized using the proposed te
hniques. In the sequel, some basi

on
epts from parallel pro
essing, su
h as dependen
es and time s
heduling, are des
ribed. Inaddition, some loop transformations, whi
h have been widely used in
ompiler optimizations, arebrie
y dis
ussed. They are divided into linear and non-linear transformations. Among non-linearloop transformations, we emphasize the tiling transformation, whi
h will be used throughout therest of this thesis. Finally, we outline the non-overlapping [HS98℄ and the overlapping [GSK01℄exe
ution poli
ies, whi
h
onstitute the base for the appli
ation of our theory.In Chapter 3, a methodology for the
onstru
tion of a tool, whi
h
an automati
ally produ
eparallel tiled
ode, is dis
ussed. Spe
ial
are is taken, so as the �nal tool to be eÆ
ient in
onsideration of both the time needed for the generation of the parallel
ode and the quality ofthe
ode produ
ed. The eÆ
ien
y at
ompile-time is enhan
ed by a redu
tion of the inequalitiesdes
ribing the tile spa
e, through a proper expansion of the initial spa
e boundaries. TheeÆ
ien
y at run-time is a
hieved by a transformation of the tile iteration spa
e into a re
tangularone. Finally, as far as the
ommuni
ation among pro
essors is
on
erned, an enhan
ement ofthe ideas presented in [GDAK02a℄, [Gou03℄ for a
luster of single-pro
essing nodes, is des
ribed.In Chapter 4, the non-overlapping and the overlapping exe
ution poli
ies are generalized,so as to be applied on a
luster of shared memory multipro
essors. In order to a
hieve thisgeneralization, we introdu
e the te
hnique of grouping, whi
h is a kind of tiling applied ontotiles. We determine the guidelines for the sele
tion of the grouping transformation. Then, avalid and optimal time s
hedule for the subsequent group spa
e is produ
ed. We also indi
atehow
omputation tasks should be allo
ated to the pro
essors. Finally, we theoreti
ally andexperimentally validate the te
hniques proposed.In Chapter 5, we assume that a
luster with a �xed number of SMP nodes is availablefor the exe
ution of the tiled iteration spa
e. Thus, our s
heduling needs to be adapted, so

8 Introdu
tion
as to take into
onsideration that a �xed number of tiles
an be
omputed at the same time.Five alternative s
hedules are proposed:
y
li
 assignment s
hedule (§5.2), mirror assignments
hedule (§5.3),
luster assignment (§5.4), retiling (§5.5) and blo
k-
y
li
 assignment s
hedule(§5.7). Then, we theoreti
ally and experimentally argue about whi
h one should be sele
ted forthe parallelization of a tile spa
e.In Chapter 6, we
on
lude with a summary of the arguments presented in this thesis and wereport some future extensions of our work. In Appendix A a summary table of the symbols usedthroughout the thesis is provided. Appendix B
onstitutes a qui
k referen
e of our algorithmi
assumptions. Finally, in Appendix C, some simple mathemati
al formulas, whi
h are often usedin this thesis, are proven.1.6 Publi
ations INTERNATIONAL JOURNALS

• M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, N. Koziris, and P. Tsanakas. HyperplaneGrouping and Pipelined S
hedules: How to Exe
ute Tiled Loops Fast on Clusters of SMPs.The Journal of Super
omputing, 33(3):197{226, Sep. 2005.
• G. Goumas, M. Athanasaki, and N. Koziris. An EÆ
ient Code Generation Te
hnique forTiled Iteration Spa
es. IEEE Trans. on Parallel and Distributed Systems, 14(10):1021{1034, O
t. 2003.
• G. Goumas, M. Athanasaki, and N. Koziris. Code Generation Methods for Tiling Trans-formations. Journal of Information S
ien
e and Engineering, 18(5):667{691, Sep. 2002.INTERNATIONAL CONFERENCES
• G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Automati
 Parallel CodeGeneration for Tiled Nested Loops. In Pro
eedings of the 2004 ACM Symposium onApplied Computing (SAC 2004), pages 1412{1419, Ni
osia, Cyprus, Mar
h 2004.
• M. Athanasaki, E. Koukis, and N. Koziris. S
heduling of Tiled Nested Loops onto a Clusterwith a Fixed Number of SMP Nodes. In Pro
eedings of the 12-th Euromi
ro Conferen
e onParallel, Distributed and Network based Pro
essing (PDP04), pages 424{433, A Coruna,Spain, Feb. 2004. IEEE Computer So
iety Press.
• M. Athanasaki, E. Koukis, and N. Koziris. EÆ
ient S
heduling of Tiled Iteration Spa
esonto a Fixed Size Parallel Ar
hite
ture. In Pro
eedings of the 9th Panhelleni
 Conferen
ein Informati
s, pages 178{192, Thessaloniki, Gree
e, Nov. 2003.

1.6 Publi
ations 9
• N. Drosinos, G. Goumas, M. Athanasaki, and N. Koziris. Delivering High Performan
eto Parallel Appli
ations Using Advan
ed S
heduling. In Pro
eedings of the Parallel Com-puting 2003 (ParCo 2003), Dresden, Germany, Sep. 2003.
• M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and N. Koziris. Pipelined S
heduling ofTiled Nested Loops onto Clusters of SMPs using Memory Mapped Network Interfa
es. InPro
eedings of the 2002 ACM/IEEE
onferen
e on Super
omputing (SC2002), Baltimore,Maryland, Nov. 2002. IEEE Computer So
iety Press.
• G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Compiling Tiled Iteration Spa
esfor Clusters. In Pro
eedings of the 2002 IEEE Int'l Conferen
e on Cluster Computing,pages 360{369, Chi
ago, Illinois, Sep. 2002.
• M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and N. Koziris. A Pipelined Exe
utionof Tiled Nested Loops on SMPs with Computation and Communi
ation Overlapping. InPro
eedings of the Workshop on Compile/Runtime Te
hniques for Parallel Computing, in
onjun
tion with 2002 Int'l Conferen
e on Parallel Pro
essing (ICPP-2002), pages 559{567, Van
ouver, Canada, Aug. 2002.
• G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Data Parallel Code Generationfor Arbitrarily Tiled Nested Loops. In Pro
eedings of the 2002 Int'l Conferen
e on Par-allel and Distributed Pro
essing Te
hniques and Appli
ations, pages 610{616, Las Vegas,Nevada, USA, June 2002.
• G. Goumas, M. Athanasaki, and N. Koziris. Automati
 Code Generation for Exe
ut-ing Tiled Nested Loops Onto Parallel Ar
hite
tures. In Pro
eedings of the 2002 ACMSymposium on Applied Computing (SAC 2002), pages 876{881, Madrid, Spain, Mar
h2002.

10 Introdu
tion

2Preliminary Con
epts -Mathemati
al Ba
kground
In this
hapter, we present some basi
 preliminary
on
epts and the mathemati
alba
kground, whi
h are ne
essary for the
omprehension of the rest of this thesis.First of all, we supply an outline of the algorithmi
 model aimed by the te
hniquespresented in this thesis. This model is further spe
i�ed and restri
ted later on in this
hapter. A summary of the restri
tions imposed is also given in Appendix B. Whilegoing through this thesis, readers may use Appendix B as a qui
k referen
e of ouralgorithmi
 model. In addition, some terms originating from the s
ienti�
 area ofalgebra (e.g. lexi
ographi
 order) are brie
y de�ned in this
hapter. Moreover, wedis
uss some
on
epts widely used in the area of parallel pro
essing (e.g. dependen
eanalysis, time s
heduling, linear loop transformations, tiling). Finally, we outlinethe ar
hite
tural
hara
teristi
s, whi
h are ne
essary for the implementation of thete
hniques des
ribed in this thesis.

12 Preliminary Con
epts - Mathemati
al Ba
kground2.1 NotationThroughout this thesis, we indi
ate the set of natural numbers by N , and the set of naturalnumbers, ex
luding zero by N∗ (N∗ = N − {0}). In addition, we indi
ate the set of integernumbers by Z, and the set of integer numbers, ex
luding zero by Z∗ (Z∗ = Z − {0}).In addition, when writing ~a > 0 (or ~a ≥ 0), we mean that all
oordinates of ve
tor ~a shouldbe positive (or non negative). Similarly, when writing A > 0 (or A ≥ 0), where A is a matrix,we mean that all elements of A should be positive (or non negative).By ⌊~a⌋, we imply the appli
ation of the
oor integer fun
tion to all
oordinates of ~a. Similarly,by ⌊A⌋, we imply the appli
ation of the
oor integer fun
tion to all elements of matrix A.2.2 Algorithmi
 Model - Nested for-loopsThe methods proposed in this thesis may be applied to any
ode segment of perfe
tly nestedfor-loops with uniform data dependen
es (see §2.3) [SF91℄. That is, our algorithms are of theform: for (j1=l1; j1 ≤ u1; j1 + +){...for (jn=ln; jn ≤ un; jn + +){Loop Body
}...

}where l1 and u1 are integer parameters, lk and uk (k = 2, . . . , n) are fun
tions of the outer loopindi
es. Spe
i�
ally, they may have the form:
lk = max(⌈fk1(j1, . . . , jk−1)⌉, . . . , ⌈fkr(j1, . . . , jk−1)⌉)and
uk = min(⌊gk1(j1, . . . , jk−1)⌋, . . . , ⌊gkr(j1, . . . , jk−1)⌋)where fki and gki are aÆne fun
tions. Therefore, we are not only dealing with re
tangulariteration spa
es, but also with more general
onvex spa
es, with the only assumption that theiteration spa
e is de�ned as the bise
tion of a �nite number of semi-spa
es of the n-dimensionalspa
e Zn.Ea
h iteration of this
ode segment is represented by an n-dimensional ve
tor

~j = (j1, j2, . . . , jn) ∈ Zn,

2.2 Algorithmi
 Model - Nested for-loops 13

alled as iteration ve
tor. Ea
h
oordinate of the iteration ve
tor represents one of the loopindi
es. Coordinate j1 represents the outermost loop index, while jn represents the innermostone.De�nition 2.1 We de�ne as iteration space the set of iteration ve
tors (representing iter-ations), whi
h are to be traversed during the exe
ution of a nested for-loop
ode segment, asdes
ribed in page 12.

Jn = {~j = (j1, j2, . . . , jn)|ji ∈ Z ∧ li ≤ ji ≤ ui, 1 ≤ i ≤ n}The iteration spa
e Jn
an also be des
ribed with a system of linear inequalities. An in-equality of this system expresses a boundary surfa
e of the iteration spa
e. Thus, Jn
an beequivalently de�ned as:
Jn = {~j ∈ Zn|B~j ≤ ~b} (2.1)Matrix B and ve
tor ~b
an be easily derived from the aÆne fun
tions lk and uk and vi
e versa.Ea
h iteration ~j = (j1, j2, . . . , jn) ∈ Zn may be represented in the n-dimensional spa
e bypoint (j1, j2, . . . , jn). In
onsequen
e, the iteration spa
e may be represented as a subset of Zn,as indi
ated in the following example.Example 2.1: The following nested for-loops are
onsistent to the algorithmi
 modeldes
ribed in this se
tion.1. Re
tangular iteration spa
e:for (j1=0; j1 ≤ 7; j1 + +)for (j2=0; j2 ≤ 5; j2 + +){Loop Body

}Matri
es B and ~b,
orresponding to this loop segment,
an be derived as follows:
j1 ≤ 7

j1 ≥ 0

j2 ≤ 5

j2 ≥ 0





⇔




1 0

−1 0

0 1

0 −1



~j ≤




7

0

5

0


2. Trapezoidal iteration spa
e:

14 Preliminary Con
epts - Mathemati
al Ba
kgroundfor (j1=0; j1 ≤ 7; j1 + +)for (j2=0; j2 ≤ 9 − j1; j2 + +){Loop Body
}Matri
es B and ~b,
orresponding to this loop segment,
an be derived as follows:

j1 ≤ 7

j1 ≥ 0

j2 ≤ 9 − j1

j2 ≥ 0





⇔




1 0

−1 0

1 1

0 −1



~j ≤




7

0

9

0


3. Convex spa
e:for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +){Loop Body

}Matri
es B and ~b,
orresponding to this loop segment,
an be derived as follows:
j1 ≤ 7

j1 ≥ 0

j2 ≤ 6

j2 ≤ 9 − j1

j2 ≥ 0

j2 ≥ 1 − j1





⇔




1 0

−1 0

0 1

1 1

0 −1

−1 −1




~j ≤




7

0

6

9

0

−1


The respe
tive iteration spa
es
an be represented in a 2-dimensional spa
e, as depi
ted inFigure 2.1.A

ording to the
onstraints
on
erning the form of loop bounds li, ui, iteration spa
e Jnmay be a
onvex subset of Zn. This model is
ompatible with several real appli
ations, mainlyfrom the s
ienti�
 areas of maths, physi
s, mole
ular biology, e.t.
. For example, we mayrefer to some of them: Ja
obi, Gauss Su

essive Over-Relaxation - SOR, Alternative Dire
tionImpli
it Integration - ADI [GDAK02a℄, Texture Smoothing - TS [PB99℄, 9-point Star Di�erentialEquation Sten
il - PDE [AI91℄, Global Sequen
e Alignment - Fi
kett's Algorithm [ABRY03℄.Unless a loop transformation is applied, the iterations of a nested-loop
ode segment areexe
uted sequentially, in lexi
ographi
 order.De�nition 2.2 Iteration ~j is lexi
ographi
ally previous than iteration ~j′ (~j ≺ ~j′), i� ji = j′i,∀i =

1, . . . , k − 1 ∧ jk < j′k, k ≤ n.

2.3 Dependen
e Ve
tors 15
j2

j1(1) Rectangular iteration space

j1 = 7

j2 = 5

j2

j1

j2 = 9 - j1

j1 = 7

j2 = 1 - j1

j2 = 6

(3) Convex iteration space

j2

j1

j2 = 9 - j1

j1 = 7

(2) Trapezoidal iteration spaceFigure 2.1: Example 2.1 - Graphi
al representation of 2-dimensional iteration spa
es onto
ZnFor example, it holds that (1, 2, 5) ≺ (4, 1, 0) ≺ (4, 1, 1) ≺ (4, 3,−8). In Figure 2.2, we havedepi
ted the lexi
ographi
 order, whi
h is
oin
ident to the program order, for the iterations ofthe
ode segment in Example 2.1(3).2.3 Dependen
e Ve
torsDe�nition 2.3 Iteration ~j2 is dependent on iteration ~j1 i�1. All three
onditions are valid:(a) ~j1 ≺ ~j2 and(b) Both iterations ~j1, ~j2 a

ess the same memory data item M and(
) At least one of these memory data a

esses is a write a

ess,or,2. Iteration ~j2 is dependent on iteration ~j3 and iteration ~j3 is dependent on iteration ~j1.

16 Preliminary Con
epts - Mathemati
al Ba
kground
j2

j1Figure 2.2: Lexi
ographi
 order of iterations for the iteration spa
e of Example 2.1(3).It is
oin
ident to the order of exe
ution of the iterations if no transformation is applied to theiteration spa
e.In the �rst
ase, ~j2 is directly dependent on ~j1, while in the se
ond one, ~j2 is indirectly

dependent on ~j1.When ~j2 is dependent on ~j1, we equivalently say that there is a dependen
e betweeniterations ~j1 and ~j2. Formally, dependen
es are modelled by dependen
e ve
tors: ~d = ~j2− ~j1.Dependen
e analysis is espe
ially
riti
al for the parallelization of programs, sin
e any twoiterations
an be exe
uted in parallel, if there is no dire
t or indire
t dependen
e between them[Ber66℄, [Ban94℄. However, when modelling dependen
es using dependen
e ve
tors, we only dealwith dire
t dependen
es. Indire
t dependen
es are implied.Dire
t dependen
es are distinguished into three
ategories [Ban88℄:
•
ow or true dependen
es, if iteration ~j1 writes on M and dependent iteration ~j2 readsthe value of M .
• anti-dependen
es, if iteration ~j1 reads the value of M and then dependent iteration ~j2writes on M .
• output dependen
es, if both iterations ~j1 and ~j2 write on M .In our algorithmi
 model, we only deal with
ow or true dependen
es. Anti-dependen
esand output dependen
es
an be eliminated using more variables [CDRV98℄. In addition, noti
ethat, in our algorithmi
 model (§2.2), all dependen
e ve
tors are
onsidered as uniform, i.e.independent of the indi
es of
omputations. Thus, we may
onstru
t the dependen
e matrix

D of a
ode segment, whi
h
onsists of all dependen
e ve
tors starting from any iteration of Jn.Ea
h dependen
e ve
tor forms a
olumn of matrix D: D = [d1|d2|...|dq].

2.4 Fourier-Motzkin Elimination Method 17
Example 2.2: Let us
onsider the nested for-loop
ode segment:for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +){A[j1,j2℄ = B[j1 + 4,j2℄+A[j1 − 2,j2℄B[j1,j2℄ = A[j1 − 3,j2 + 1℄ -A[j1,j2 − 1℄

}Iteration (j1, j2) reads matrix elements A[j1 − 2, j2], A[j1 − 3, j2 + 1], A[j1, j2 − 1], whi
hare written by iterations (j1 − 2, j2), (j1 − 3, j2 + 1), (j1, j2 − 1), respe
tively. Thus, there aretrue or
ow dependen
es: ~d1 = (2, 0), ~d2 = (3,−1), ~d3 = (0, 1). In addition, iteration (j1, j2)reads matrix element B[j1 + 4, j2], whi
h is later written by iteration (j1 + 4, j2), imposinganti-dependen
e ~d4 = (4, 0). Therefore, the dependen
e matrix of this
ode segment is: D =[
2 3 0 4

0 −1 1 0

]. Noti
e that all four dependen
e ve
tors are lexi
ographi
ally positive.In order to eliminate anti-dependen
e ~d4 = (4, 0), we may equivalently rewrite the previous
ode segment as follows:for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +)B temp[j1 + 4,j2℄ = B[j1 + 4,j2℄for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +){A[j1,j2℄ = B temp[j1 + 4,j2℄+A[j1 − 2,j2℄B[j1,j2℄ = A[j1 − 3,j2 + 1℄ -A[j1,j2 − 1℄
}The dependen
e matrix for the se
ond nested for-loop of this
ode segment is: D =[

2 3 0

0 −1 1

]. These dependen
es
an be graphi
ally represented, as depi
ted in Figure 2.3.
2.4 Fourier-Motzkin Elimination MethodThe Fourier-Motzkin elimination method (FME)
an be used to
onvert a system of linearinequalities A~x ≤ ~a into a form, in whi
h the lower and upper bounds of ea
h element xi ofthe ve
tor ~x is expressed in terms of the elements x1, . . . , xi−1 only. This fa
t is very importantwhen using a nested loop, in order to traverse an iteration spa
e Jn de�ned by a system ofinequalities. In this
ase, the bounds of index jk of the nested loop must be expressed in termsof the k − 1 outer indi
es only. This means that the Fourier-Motzkin elimination method
an
onvert a system des
ribing a general iteration spa
e into a form suitable for use in nested loops.After applying the Fourier-Motzkin elimination method, the eliminated system
onsists of a

18 Preliminary Con
epts - Mathemati
al Ba
kground
j2

j1Figure 2.3: Example 2.2 - Graphi
al representation of
ow dependen
esvery large number of inequalities des
ribing the bounds of ea
h variable xi, but some of them arenot ne
essary for the
al
ulation of xi's bounds. The unne
essary inequalities must be eliminatedto simplify the resulting system. In order to remove the redundant inequalities, two methods havebeen proposed: the ad-Ho
 simpli�
ation method and the exa
t simpli�
ation method.A full des
ription of the Fourier-Motzkin elimination method, the ad-Ho
 simpli�
ation and theexa
t simpli�
ation is presented in [BW95℄.If the initial system of inequalities
onsists of k inequalities with n variables, then the
om-plexity of the Fourier-Motzkin elimination algorithm
an be expressed by the formula ([Jim99℄):
Complexity = O(

k2n

22(n+1)−2
) ≈ O((

k

2
)2

n

)The Fourier-Motzkin elimination method is extremely
omplex, sin
e it depends doubly expo-nentially on the number of loops involved.In addition, a single appli
ation of the method is almost always useless, sin
e it results to alot of inequalities, whi
h are not ne
essary for the
al
ulation of the loop bounds. They shouldbe
al
ulated a lot of times during the exe
ution of the �nal
ode and impose an una

eptableoverhead to the �nal
ode exe
ution. Thus, the above simpli�
ation methods should be applied,in order to eliminate the redundant inequalities. The ad-Ho
 simpli�
ation method, whi
his quite fast, a
hieves to eliminate only some of the redundant inequalities. The rest of themshould be eliminated with the use of the exa
t simpli�
ation method. It applies on
e the Fourier-Motzkin elimination method for ea
h inequality of the �nal system, in order to
he
k whetherit is redundant. Thus, it in
reases
onsiderably the
omplexity of the �nal program.

2.5 Time S
heduling 192.5 Time S
hedulingWhen parallelizing a nested for-loop, one should primarily reorganize the sequential exe
utionof iterations, in order to
reate parallel regions, whi
h may be exe
uted at the same time bydi�erent CPUs. The �nal goal is the minimization of the total exe
ution time. This is the
asewhen no other appli
ations are running simultaneously on the same
omputing system and thuswe are not interested in the intera
tion among di�erent appli
ations.The fun
tions whi
h map the iterations of a nested for-loop onto di�erent time instan
es,are
alled time s
heduling fun
tions. When devising a time s
heduling fun
tion, our goal isto enable the exe
ution of as many parallel iterations as possible, so as to a
hieve the minimumtotal exe
ution time, without modifying the results produ
ed by the initial sequential exe
utionof the program.In order to
ertify that the results produ
ed by the initial sequential exe
ution are notmodi�ed, a time s
hedule must respe
t the initial program dependen
es. In other words, itshould map iterations
onne
ted by a dependen
e ve
tor to distin
t exe
ution steps. In thisway, it is ensured that only those iterations of the initial nested for-loop that have no dire
tor indire
t dependen
e among them will be exe
uted in parallel. Thus, a time s
hedule is validwhen for ea
h dependen
e ve
tor, the sour
e iteration is mapped to a time instan
e previousthan the destination iteration.De�nition 2.4 Time s
heduling fun
tion s : Jn → Z is valid for a nested for-loop, with adependen
e matrix D, i� for ea
h pair of iterations ~j1, ~j2 ∈ Jn : ~j2 = ~j1 + ~d, ~d ∈ D, it holds that
s(~j1) < s(~j2).2.5.1 Linear Time S
hedulingLinear time s
heduling is a spe
ial
ase of time s
heduling. It arises when the s
heduling fun
tion
s(~j) is linear. Linearity is
onvenient, as we shall see in Chapters 4 and 5, sin
e it results in aregular assignment of iterations or tiles (see §2.6.2 for a de�nition of tile) to CPUs.De�nition 2.5 We de�ne as linear time s
heduling of a nested for-loop, any time s
heduling
sΠ, su
h that: ∀~j ∈ Jn

sΠ(~j) = ⌊
Π~jT + t0
dispΠ

⌋where Π ∈ Z1×n, dispΠ = min{Π~di
T

: ~di ∈ D} and t0 is an integer
onstant.We noti
e that in De�nition 2.5:
• Row-ve
tor Π is
alled as linear s
heduling ve
tor.

20 Preliminary Con
epts - Mathemati
al Ba
kground
• Integer
onstant t0 is
alled as alignment
onstant.
• Constant dispΠ is
alled as displa
ement
onstant.Linear s
heduling ve
tor Π de�nes a
lass of hyperplanes su
h that: All iterations of Jnbelonging to the same hyperplane are mapped to the same time instan
e. When using theterm hyperplane, we mean a beeline for a 2-dimensional iteration spa
e, a ruled surfa
e for a

3-dimensional iteration spa
e and so on.It
an be proven [PTK98℄ that a linear time s
heduling preserves depeden
es i�
∀~di ∈ D : Π~di

T
> 0 (2.2)A

ording to a linear time s
heduling sΠ, the time required for the exe
ution of a nestedfor-loop (makespan) is
al
ulated with the use of formula:

℘ = max{sΠ(~j) : ~j ∈ Jn} −min{sΠ(~j) : ~j ∈ Jn} + 1 (2.3)Example 2.3: In this example, we will produ
e a parallel time s
hedule for the iterations ofthe nested for-loop
ode segment:for (j1=0; j1 ≤ 7; j1 + +)for (j2=max(0, 1 − j1); j2 ≤ min(6, 9 − j1); j2 + +){A[j1,j2℄ = B temp[j1 + 4,j2℄+A[j1 − 2,j2℄B[j1,j2℄ = A[j1 − 3,j2 + 1℄ -A[j1,j2 − 1℄
}The dependen
es of this nested for-loop have been designed in Figure 2.3. Let us sele
tve
tor Π =

[
1 1

], as a linear s
heduling ve
tor for this iteration spa
e.
Π ~d1

T
=
[

1 1
](2

0

)
= 2 > 0,

Π ~d2
T

=
[

1 1
](3

−1

)
= 2 > 0,

Π ~d3
T

=
[

1 1
](0

1

)
= 1 > 0,

2.5 Time S
heduling 21
A

ording to formula (2.2), Π is a valid s
heduling ve
tor for this example. In addition, a

ordingto De�nition 2.5, dispΠ = min{Π~di

T
: ~di ∈ D} = 1. If we set t0 = −1, then we get:

sΠ(j1, j2) = j1 + j2 − 1In Figure 2.4 we have depi
ted the resulting time s
hedule. Noti
e that, a

ording to formula(2.3), the makespan is ℘= 9.
j2

j1s
Π = 0

s
Π = 1

s
Π = 2

s
Π = 3

s
Π = 4

s
Π = 5

s
Π = 6

s
Π = 7

s
Π = 8

Figure 2.4: Example 2.3 - Time S
hedule produ
ed by linear s
heduling ve
tor Π = [1 1].The dashed lines indi
ate the
lass of hyperplanes-beelines de�ned by the linear s
heduling ve
tor
Π (Π~j = constant). The grey areas in
lude iterations that are mapped to the same time instan
e,a

ording to the s
heduling fun
tion sΠ(j1, j2) = j1 + j2 − 1. Sin
e dispΠ = 1, ea
h grey areain
ludes only one hyperplane.

If we sele
t ve
tor Π =
[

2 3
], as a linear s
heduling ve
tor:

Π ~d1
T

=
[

2 3
](2

0

)
= 4 > 0,

Π ~d2
T

=
[

2 3
](3

−1

)
= 3 > 0,

Π ~d3
T

=
[

2 3
](0

1

)
= 3 > 0,

22 Preliminary Con
epts - Mathemati
al Ba
kground
A

ording to formula (2.2), Π is a valid s
heduling ve
tor for this example. In addition, a

ordingto De�nition 2.5, dispΠ = min{Π~di

T
: ~di ∈ D} = 3. If we set t0 = −2, then we get:

sΠ(j1, j2) = ⌊
2j1 + 3j2 − 2

3
⌋In Figure 2.5 we have depi
ted the resulting time s
hedule. Noti
e that, a

ording to formula(2.3), the makespan is ℘= 8.

j2

j1s
Π = 0

s
Π = 1

s
Π = 2

s
Π = 3

s
Π = 4

s
Π = 5

s
Π = 6

s
Π = 7

Figure 2.5: Example 2.3 - Time S
hedule produ
ed by linear s
heduling ve
tor Π = [2 3].The dashed lines indi
ate the
lass of hyperplanes-beelines de�ned by the linear s
heduling ve
tor
Π (Π~j = constant). The grey areas in
lude iterations that are mapped to the same time instan
e,a

ording to the s
heduling fun
tion sΠ(j1, j2) = ⌊ 2j1+3j2−2

3 ⌋. Sin
e dispΠ = 3, ea
h grey areain
ludes 3 hyperplanes.
2.6 Loop Transformations2.6.1 Linear Loop TransformationsLinear transformations, whi
h are often used in loop transformation literature
an be distin-guished into three main
ategories:1. loop inter
hange2. loop reversal

2.6 Loop Transformations 23
3. loop skewingEa
h linear loop transformation
an be represented by a n × n transformation matrix T .Thus, iteration ~j of the initial iteration spa
e is mapped to iteration T~j of the �nal iterationspa
e and dependen
e ve
tor ~di is transformed to dependen
e ve
tor T ~di. A loop transformationresults in a
ode segment equivalent to the original one i� it preserves dependen
es, that is i�all transformed dependen
e ve
tors are lexi
ographi
ally positive (∀~di ∈ D it holds T ~di ≻ ~0)[WL91b℄.If more than one linear transformations T1, T2 are su

essively performed, the �nal looptransformation
an be represented by the produ
t of the respe
tive transformation matri
es

T = T2T1.Loop inter
hange transforms iteration ve
tor (j1, j2) into iteration ve
tor (j2, j1) (see Fig-ure 2.6). This transformation
an be represented by matrix T =

[
0 1

1 0

]. Thus
~j′ =

[
0 1

1 0

](
j1

j2

)
=

(
j2

j1

)

j2

j1

Loop Interchange

j2' = j1

j1' = j2Figure 2.6: Graphi
al representation of an inter
hange transformationTwo su

essive loop inter
hanges
an model a
y
li
 ex
hange of three loop indi
es, soas the innermost loop index j3 to be
ome the outermost one. First, inter
hange of loopindi
es j2, j3 is represented by matrix T1 =




1 0 0

0 0 1

0 1 0


. Se
ond, inter
hange of loopindi
es j1, j2 is represented by matrix T2 =




0 1 0

1 0 0

0 0 1


. The total transformation is

24 Preliminary Con
epts - Mathemati
al Ba
kground
represented by matrix T = T2T1 =




0 0 1

1 0 0

0 1 0


.Loop reversal is modelled by multiplying a loop index by −1. For example, the reversal trans-formation depi
ted in Figure 2.7 is modelled by transformation matrix T =

[
1 0

0 −1

].
j2

j1

Loop Reversal j1

j2' = -j2

Figure 2.7: Graphi
al representation of a reversal transformationLoop skewing adds a loop index multiple to another loop index. For a 2-dimensional iterationspa
e, it
an be modelled by a transformation matrix T =

[
1 0

f 1

] or T =

[
1 f

0 1

],where f ∈ Z. For example, the transformation shown in Figure 2.8 is represented bymatrix T =

[
1 1

0 1

].All above loop transformations are unimodular transformations and are represented byunimodular matri
es.De�nition 2.6 A square matrix A is unimodular, if it
onsists of only integer elements and itsdeterminant equals to ±1.Unimodular transformations have a very useful property: their inverse transformation isintegral as well. On the other hand the inverse of a non-unimodular matrix is not integral,whi
h
auses the transformed spa
e to have holes. We
all holes the integer points of thetransformed spa
e that have no integer anti-image in the original spa
e.

2.6 Loop Transformations 25
j2

j1

Loop skewing

j2

j1' = j1 + j2Figure 2.8: Graphi
al representation of a skewing transformationDe�nition 2.7 Let A be an m×n integer matrix. We
all the set L(A) = {~y|~y = A~x∧~x ∈ Zn}the latti
e that is generated by the
olumns of A.Consequently, we
an de�ne the holes of a non-unimodular transformation as follows: if T isa non-unimodular transformation, we
all holes the points ~j′ ∈ Zn, su
h that T−1~j′ /∈ Zn. Onthe
ontrary, we
all a
tual points of a non-unimodular transformation T the points ~j′ ∈ Zn, forwhi
h it holds T−1~j′ ∈ Zn ⇔ ~j′ ∈ L(T). Figure 2.9 shows the image of an iteration spa
e afterthe appli
ation of a unimodular and a non-unimodular transformation. Holes are depi
ted withwhite dots and a
tual points with grey ones. It has been proven in [Ram92℄ that if T is a m×ninteger matrix, and C is an n× n unimodular matrix, then L(T) = L(TC).De�nition 2.8 We say that a square, non-singular matrix H = [~h1, . . . , ~hn] ∈ Rn×n is in
olumn hermite normal form (HNF) i� H is lower triangular (hij 6= 0 implies i ≥ j) and for all
i > j, 0 ≤ hij < hii (the diagonal is the greatest element in the row and all entries are positive.)As proven in [Ram92℄, if T is a m × n integer matrix of full row rank, then there existsan n × n unimodular matrix C su
h that TC = [T̃0] and T̃ is in hermite normal form. Everyinteger matrix with full row rank has a unique hermite normal form. It holds that L(T) = L(T̃),whi
h means that an integer matrix of full row rank and its hermite normal form produ
e thesame latti
e. This property is very useful for
ode generation of tiled spa
es, as we shall see inChapter 3.

26 Preliminary Con
epts - Mathemati
al Ba
kground
j1

j2

T1=
1
0

1
1

|T1|=1 j1'

j2'

j1

j2

T2=
2
0

1
1

|T2|=2
j1'

j2' actual point hole

Figure 2.9: Unimodular and non-unimodular transformations.The main di�eren
e between unimodular and non-unimodular transformations is that: The former
onstitute a 1-1 fun
tion from Zn to Zn. The latter results to \holes" in the transformed spa
e,whi
h do not have an integer anti-image in the initial spa
e, as depi
ted by white dots in this�gure.2.6.2 Tiling or Supernode TransformationFine vs. Coarse grained parallelismWhen parallelizing a
ode segment, apart from performing a dependen
e analysis and determin-ing whi
h iterations may be exe
uted simultaneously (as seen in §2.5), we should also determinewhi
h iterations will be exe
uted by whi
h pro
essors. For example, the s
hedule depi
ted inFigure 2.4,
an be implemented by assigning a row of iterations to ea
h pro
essor, as seen inFigure 2.10. This partitioning of the iteration spa
e
an supply an intuition of �ne grain par-allelism [PTK98℄. The goal of this mapping is the parallel exe
ution of as many iterations aspossible.In Figure 2.10, we have erased dependen
es among iterations assigned to the same pro
essor.Only dependen
es among iterations assigned to di�erent pro
essors are represented by bla
karrows. These dependen
es
orrespond to data
omputed in a pro
essor, whi
h should be usedin
omputations exe
uted by another pro
essor. Thus, they
orrespond to data that shouldbe somehow transferred from a pro
essor to another. This transfer implies a
ommuni
ationoverhead, whi
h may be minimal, when a systoli
 parallel ar
hite
ture is embedded on
hip[PTK98℄, or vast when implemented upon a message passing interfa
e, su
h as MPI [MPI94℄,[MPI97℄.The volume of data that must be transferred may be large enough to annihilate the ad-vantages of parallelization. It is strongly possible that the parallel program will take longer toexe
ute than the sequential one. The problem in this implementation is not only the amount ofdata to be transferred, but also the number of distin
t messages en
apsulating the data. Thus,

2.6 Loop Transformations 27

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

j2

j1s
Π = 0

s
Π = 1

s
Π = 2

s
Π = 3

s
Π = 4

s
Π = 5

s
Π = 6

s
Π = 7

s
Π = 8

CPU 0Figure 2.10: Fine-grained parallelism.In this �gure, iterations along the same dashed line are exe
uted at the same time. Iterationsinside the same grey area are exe
uted by the same pro
essor. Dependen
es among iterationsassigned to the same pro
essor have been eliminated. With bla
k arrows, we have depi
ted onlydependen
es among iterations assigned to di�erent pro
essors.in order to a
hieve an eÆ
ient parallelization one should devise a way to1. redu
e the amount of data transferred and2. group them into fewer messages.Both of these obje
tives
an be a
hieved by a supernode or tiling transformation, thatis by grouping together a number of neighboring iterations and
onsidering them as an atomi
unit. Then, instead of s
heduling iterations, we s
hedule tiles. Communi
ation o

urs beforeand after the exe
ution of a whole tile. In other words, a pro
essor should re
eive the datarequired for the
omputation of a tile, before the exe
ution of this tile's iterations start, andsend data
omputed inside this tile, after the exe
ution of the entire tile has been
ompleted.Thus, apart from redu
ing the amount of data to be transferred, we may also group in a singlemessage the transmission of data
omputed in the same tile, as seen in Figure 2.11.An Intuitive De�nition of Tiling TransformationIn general, when applying tiling, an n-dimensional iteration spa
e Jn is partitioned by n indepen-dent families of parallel hyperplanes into n-dimensional hyperparallelepipeds, named as tiles.Ea
h tile is represented by an n-dimensional ve
tor ~jS = (jS
1 , j

S
2 , . . . , j

S
n) ∈ Zn,
alled as tileve
tor (in
orresponden
e to iterations being represented by iteration ve
tors). In Figure 2.12we have indi
ated the tile ve
tor, whi
h identi�es ea
h tile.In addition, ea
h tile has a unique starting iteration,
alled as tile origin iteration. Iter-ation (0, . . . , 0) is the origin iteration of tile (0, . . . , 0). In order to identify the origin iteration

28 Preliminary Con
epts - Mathemati
al Ba
kground
j2

j1

CPU 0

CPU 1

CPU 2

CPU 3

Figure 2.11: Coarse-grained parallelism.Iterations within the same parallelogram are grouped together in the same tile. Neighboring tilesof the same shade are assigned to the same pro
essor and exe
uted su

essively. Dependen
esamong iterations assigned to the same pro
essor have been eliminated. In addition, dependen
eswith origin inside the same tile have been depi
ted with arrows of the same shade. The respe
tivedata transfers
an be grouped in a single message.of another tile ~jS
x , we should parallely shift tile (0, . . . , 0), so as to be
ongruent with tile ~jS

x .Then, the iteration of tile ~jS
x , whi
h is
ongruent with iteration (0, . . . , 0) is the origin iterationof tile ~jS

x . In Figure 2.12 we have pointed out the origin iteration of ea
h tile. Noti
e thattile origin iterations may not be in
luded in the iteration spa
e. For example, in Figure 2.12,iteration (0, . . . , 0), whi
h is the origin iteration of tile (0, . . . , 0), is not in
luded in Jn. In orderto distinguish this iteration from other tile origin iterations, we have depi
ted it as a white dot.A tiling transformation
an be uniquely de�ned by n ve
tors-edges of the tiles-hyperparal-lelepipeds. Thus, a tiling transformation
an be de�ned by an n × n matrix P ,
alled inversetiling matrix, whose
olumns
onsist of the above mentioned ve
tors-edges. For example, inFigure 2.13, we have indi
ated how the inverse tiling matrix is derived from Figure 2.12.Dually, a tiling transformation
an be de�ned by an n × n matrix H = P−1,
alled tilingmatrix. Ea
h row-ve
tor of H is perpendi
ular to a
lass of hyperplanes partitioning theiteration spa
e into tiles.The tiling matrix H has some important properties
on
erning tiling transformation:1. Iteration ~j is mapped to tile ~jS = ⌊H~j⌋.2. Iteration ~j0 = H−1 ~jS is the origin iteration of tile ~jS .

2.6 Loop Transformations 29
j2

j1

tile (0,0)

tile (1,0)

tile (0,1)

tile (1,1)

tile (2,1)

tile (0,2)

tile (1,2)

tile (2,2)

tile (0,3)

tile (1,3)

Tile origin iterations

Iteration space
Tile space





−=
21
03

P




=
31
02

6
1H

Tiling matrices

t2

t1

Tile origin iterations not
included in the iteration spaceFigure 2.12: Tiling Transformation.The iterations inside the same grey area are mapped to the same tile. Ea
h tile is identi�ed by aunique tile ve
tor, whi
h has been indi
ated inside the respe
tive grey area. Bla
k dots representthe origin iterations of ea
h tile. Noti
e that tile origin iterations may not be in
luded in theiteration spa
e. See, for example, the tile origin iterations of tiles (0, 0) and (1, 0), whi
h havebeen designed as white dots.Noti
e that, as far as parallel pro
essing is
on
erned, tiling transformation is useful onlyin
ase the iteration spa
e
annot be partitioned into independent subsets. This happens whenthe
lass of dependen
e matrix D equals to n. Otherwise, the independent subsets may beassigned one to ea
h pro
essor [WL91b℄, [Hol92℄, [SF92℄, [PC89℄. Then, there is no need for
ommuni
ation among pro
essors during the exe
ution of the iteration spa
e (see, for example,Figure 2.14).A Formal De�nition of Tiling TransformationFormally, tiling transformation is de�ned as follows:

r : Zn −→ Z2n, r(~j) =

[
⌊H~j⌋

~j −H−1⌊H~j⌋

]where ve
tor ⌊H~j⌋ identi�es the
oordinates of the tile that index point ~j = (j1, j2, . . . , jn) ismapped to, and ~j − H−1⌊H~j⌋ gives the
oordinates of ~j within that tile relative to the tile

30 Preliminary Con
epts - Mathemati
al Ba
kground

1p

2p

1h
2h





−=
21
03

P




=
31
02

6
1H

IPH =⋅Figure 2.13: Constru
tion of Tiling Matri
es.Matrix P
onsists of the edge-ve
tors of the tile-hyperparallelepiped. Matrix H is the inverse ofmatrix P .origin. Thus, the initial n-dimensional iteration spa
e Jn is transformed to a 2n-dimensionalone,
onsisting of the n-dimensional spa
e of tiles (tile spa
e) and the n-dimensional spa
e ofindi
es within tiles (tile iteration spa
e).
• The tile spa
e JS is de�ned as follows:

JS = { ~jS | ~jS = ⌊H~j⌋,~j ∈ Jn} (2.4)It
an be also written as
JS = { ~jS = (jS

1 , . . . , j
S
n)|jS

i ∈ Z ∧ lSi ≤ jS
i ≤ uS

i , 1 ≤ i ≤ n}where lSi , uS
i
an be dire
tly
omputed from the fun
tions l1, . . . , ln, u1, . . . , un and thetiling matrixH, as des
ribed in [AI91℄, [GAK03℄ and in Chapter 3 of this thesis. Ea
h point

~jS in this n-dimensional integer spa
e JS is a distin
t tile with
oordinates (jS
1 , j

S
2 , . . . , j

S
n).

• The tile iteration spa
e
TIS = {~j ∈ Zn|0 ≤ ⌊H~j⌋ < 1} (2.5)
ontains all points that belong to the tile starting at the axes origins.

• The tile origin spa
e
TOS = {~j0 ∈ Zn|~j0 = H−1 ~jS , ~jS ∈ JS} (2.6)
ontains the origins of tiles in the original iteration spa
e.Thus, it holds: Jn H

−→ JS and JS P
−→ TOS. Note that all points of Jn that belong to thesame tile, are mapped to the same point of JS . Note also that TOS is not ne
essarily a subset of

2.6 Loop Transformations 31
j2

j1Figure 2.14: When the
lass of dependen
e matrix D is less than nwe
an partition the n-dimensional iteration spa
e into independent subsets. Thus, we a
hieveparallelization of this iteration spa
e with no
ommuni
ation at all.
Jn, sin
e there may exist tile origins whi
h do not belong to the original iteration spa
e Jn, butsome iterations within these tiles do belong to Jn. These tile origins are depi
ted in Figure 2.12by white dots.Points belonging to the same tile with tile origin ~j0 ∈ TOS, satisfy the system of inequalities

0 ≤ H(~j − ~j0) < 1 (2.7)In order to deal with integer inequalities, we de�ne g to be the smallest natural number su
hthat gH is an integer matrix. Thus, we
an rewrite the above system of inequalities as follows:
0 ≤ gH(~j − ~j0) < g ⇔

0 ≤ gH(~j − ~j0) ≤ (g − 1) (2.8)We denote
S =

(
gH

−gH

) and ~s =

(
(g − 1)~1

~0

)Equivalently, system (2.8) be
omes:
S(~j − ~j0) ≤ ~s (2.9)

32 Preliminary Con
epts - Mathemati
al Ba
kground
Note that if ~j0 = 0, S(~j − ~j0) ≤ ~s is satis�ed i� a point belongs to TIS.Example 2.4: If we apply the tiling transformation of Figure 2.12 to the iteration spa
e ofExample 2.3, then, as shown in Figure 2.12,1. Jn is transformed by matrix H to the tile spa
e

JS = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2)}2. The tile iteration spa
e
ontains the points TIS = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}.3. The tile spa
e is transformed by matrix P to the tile origin spa
e
TOS = {(0, 0), (0, 2), (0, 4), (0, 6), (3,−1), (3, 1), (3, 3), (3, 5), (6, 0), (6, 2)}Note that points (0, 0), (3,−1) ∈ TOS do not belong to Jn.Sin
e g = 6, the system of inequalities S(~j − ~j0) ≤ ~s des
ribing the boundaries of a tile is




2 0

1 3

−2 0

−1 −3




(
j1 − j01

j2 − j02

)
≤




5

5

0

0




2.6.3 Tile Dependen
esAs seen in page 27, one of the �nal goals of tiling is to
onstru
t a more eÆ
ient parallel exe
utions
hedule for a spe
i�
 appli
ation. Instead of s
heduling iterations, as in §2.5, we should nows
hedule tiles. Thus, instead of dependen
es among iterations (see De�nition 2.4), we shouldtake into
onsideration the dependen
es among tiles.Dependen
es among tiles are given by the
olumn-ve
tors of the tile dependen
e matrix
DS , whi
h is de�ned as follows:

DS = { ~dS | ~dS = ⌊H(~jt0 + ~d)⌋, ~d ∈ D, ~jt0 ∈ Zn ∧ ⌊H ~jt0⌋ = 0},where ~jt0 denotes the index points belonging to the �rst
omplete tile starting from iteration

2.6 Loop Transformations 33
(0, . . . , 0) (tile (0, . . . , 0)).Given an algorithm with dependen
e matrix D, for a tiling to be legal, it must hold HD ≥ 0(see [IT88℄, [RS92℄). This ensures that tiles are atomi
 and that the initial exe
ution order ispreserved. In the opposite
ase, any exe
ution order of tiles would result in a deadlo
k (seeFigure 2.15).

j2

j1

tile (0,0)

tile (1,0)

tile (0,1)

tile (1,1)

tile (2,1)

tile (0,2)

tile (1,2)

tile (2,2)

tile (0,3)

tile (1,3)

Iteration space





−=
21
03

P




=
31
02

6
1H

Tiling matrices





−=
11
01

D

Dependence matrix















−
=

2
1

3
1

0
3
1

HD

< 0Figure 2.15: Validity of a tiling transformation.All elements of matrix HD should be non-negative. In this �gure ~h2
~d1 < 0. Thus, we
an �ndno time s
heduling of tiles whi
h preserves dependen
es. For example, tile (1, 2) is dependent ontile (1, 1) and tile (1, 1) is dependent on tile (1, 2). Assuming an atomi
 exe
ution of tiles, thistiling results to a deadlo
k.

In this thesis, as in [GSK01℄, we assume that all dependen
e ve
tors are smaller than thetile size, thus they are entirely
ontained in ea
h tile's area. This means that all elements ofmatrix HD are smaller than 1 (~hi
~dj ≤ 1, ∀i, j = 1, . . . , n) [Xue97b℄, or, alternatively, that thetile dependen
e matrix DS
ontains only 0's and 1's. This assumption is quite reasonable, sin
edependen
e ve
tors for
ommon problems are relatively small, while tile sizes may result to beorders of magnitude greater in systems with very fast pro
essors. In this
ase every tile needsto ex
hange data only with its nearest neighbors, one in ea
h dimension of JS .

34 Preliminary Con
epts - Mathemati
al Ba
kground2.7 Overlapping vs. Non-Overlapping Exe
ution2.7.1 Non-Overlapping Exe
ution Poli
yIn [HS98℄, Hodzi
 and Shang have presented a s
heme for s
heduling loops that have beentransformed by a tiling transformation. Their approa
h is to minimize the total exe
ution time,as follows: First, the optimal tiling matrix H is determined and then the tiling transformationHis applied to the original iteration spa
e. The resulting tile spa
e JS is s
heduled using a lineartime hyperplane Π. All tiles along a
ertain dimension are mapped to the same pro
essor. Totalexe
ution of tiles
onsists of su

essive
omputation phases interleaved with
ommuni
ation ones.A pro
essor re
eives the data needed to exe
ute a tile at time step i, performs the
omputationsand sends to its neighboring pro
essors the boundary data, whi
h will be used for tile
al
ulationsin time step i+ 1.Thus, the total exe
ution time is given by formula:
Tnonoverlap = ℘(tcomp + tcomm) (2.10)where ℘ is the number of time steps needed to
omplete the parallel exe
ution (makespan),

tcomp is the exe
ution time of a tile and tcomm is the
ommuni
ation time.Therefore, the overall parallel loop exe
ution
onsists of atomi

omputations of tiles inter-leaved with
ommuni
ation for the transmission of the results to neighboring pro
essors. Sin
ethe tile spa
e JS has only the unitary dependen
e ve
tors (see §2.6.3 and §B.5), the optimallinear time s
hedule
an be easily proven to be: Π = [1 1 . . . 1] [HS98℄. In Figure 2.16, thenon-overlapping exe
ution poli
y is shown.A possible implementation of this exe
ution model
an be summarized by the followingpseudo
ode:fora
ross (t1=lS1 ; t1 ≤ uS
1 ; t1 + +)...fora
ross (tn−1=lSn−1; tn−1 ≤ uS

n−1; tn−1 + +)/*Sequential exe
ution of tiles assigned to this CPU*/for (tn=ln; tn ≤ un; tn + +){Re
eive data from neighboring tilesCompute this tileSend data to neighboring tiles
}

2.7 Overlapping vs. Non-Overlapping Exe
ution 35

4

receive(data,p1)

3

2

send(data,p2)

compute

P3

P

P

P
P

comm
comm
comm

compute

compute

4P

2

P

P

P1

5

6

t t t t t t1 2 3 4 5 6

compute
compute
compute comm

comm
comm

compute
compute

compute

comm
comm
commFigure 2.16: Non-overlapping Exe
ution Poli
yfor a tile spa
e, using six pro
essors. We see that the overall s
hedule has
omputation subphasesinterleaved with
ommuni
ation ones.2.7.2 Overlapping Exe
ution Poli
yThe previous quite straightforward model of exe
ution results in very good exe
ution times, sin
eit exploits all inherent parallelism at the tile level. However, one of its important drawba
ks isthat ea
h pro
essor has to wait for essential data before starting the
omputation of a
ertaintile, and wait for the transmission of the results to its neighbors, thus resulting in signi�
antidle pro
essor time. It would be ideal if a node was able to re
eive,
ompute and send data atthe same time. Modern network interfa
es (NICs) have DMA engines that enable them to workin parallel with the CPU. This means that some
ommuni
ation work
an be overlapped witha
tual CPU
y
les. In fa
t, even some part of the non-blo
king
ommuni
ation needs the CPU,i.e. DMA initialization. Nevertheless, all subsequent data transferring a
tions
an be ideallyoverlapped with useful
omputation.However, what really imposes su
h ineÆ
ient pro
essor utilization, is the data
ow betweensu

essive time steps. Spe
i�
ally, it seems that
omputations and respe
tive
ommuni
ationsubsteps for ea
h time step should be serialized to preserve the
orre
t exe
ution order. Everypro
essor should �rst re
eive data, then
ompute and �nally send the results to be used atthe next time step by its neighbor. A mu
h more thorough look at the
orre
t data
ow inthe non-overlapping
ase, reveals the following interesting property: If we slightly modify theinitial linear s
hedule, then we
ould overlap some
ommuni
ation time with
omputations. This

36 Preliminary Con
epts - Mathemati
al Ba
kground
means that, in ea
h time step, the pro
essor should send and re
eive data that is not dire
tlydependent to the data
omputed at this step. A valid time exe
ution poli
y would be for apro
essor to re
eive data from all neighbors to use them at k+ 1 time step, send data produ
edat previous time step (k−1) and
ompute its results (Figure 2.17). In this
ase, every pro
essor
omputes a tile and, at the same time, sends data produ
ed in the previous step and re
eivesdata needed in next one. In Figure 2.17 the overlapping exe
ution poli
y is shown. A moredetailed des
ription of this s
hedule
an be found in [GSK01℄, [STK02℄, [Sot04℄.

2

3

4

1

2

3

4

5

6

t t t t t t

k−1 k k+1 k+2

1 2 3 4 5 6

P

P

P

P

P

P

P

P

P

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit
compute

dma transmit dma transmit
compute

dma transmit
compute

transmitdma

dma transmit

compute

compute computeFigure 2.17: Overlapping Exe
ution Poli
y.Consider, for example, pro
essor P3 at k time step: while it
omputes a tile, it
on
urrentlyperforms the following: sends the results produ
ed during k − 1 time step and re
eives datafrom neighbors, to be used during the
omputation of the next tile at k + 1 time step. Notethe ar
s shown in this �gure. They depi
t the a
tual
ow of data between su

essive time steps(
omputes-sends-re
eives) in a pipelined way. The out
ome of this s
hedule is to have su

essive
omputations overlapped with
ommuni
ation phases, thus 100% pro
essor utilization.If we implement the overlapping of
omputation and
ommuni
ation, then we will havethe following s
heme: A pro
essor �rst initiates all the non-blo
king send operations and thenperforms the a
tual atomi
 tile
omputations. While the pro
essor performs
omputations, theNIC is re
eiving data from neighbors and sending previously
omputed data to others as well.When
ommuni
ation work is �nished, the pro
essor re
eives an interrupt.A possible implementation of this exe
ution model
an be summarized by the followingpseudo
ode:

2.8 Hardware High Performan
e Features 37
fora
ross (t1=lS1 ; t1 ≤ uS

1 ; t1 + +)...fora
ross (tn−1=lSn−1; tn−1 ≤ uS
n−1; tn−1 + +)/*Sequential exe
ution of tiles assigned to this CPU*/for (tn=ln; tn ≤ un; tn + +){Initialize DMA
ardCompute this tileWait for send & re
eive to
ompleteSyn
hronize with neighbors

}A

ording to the previous properties, the total exe
ution time for the overlapping s
hedule,as dedu
ed from Figure 2.17, is given by:
Toverlap = ℘(tstart dma + max(tcomp, tcomm dma) + tsynchro), (2.11)where ℘ is the number of time steps of the parallel exe
ution (makespan). The time needed toinitiate the DMA engine is tstart dma, tcomp is the tile exe
ution time, tcomm dma is the
ommuni
a-tion time whi
h
an be overlapped with
omputation and tsynchro is the required syn
hronizationtime between su

essive time steps. In
orrelation to the parameters used in equation (2.10), itholds that: tinit dma + tcomm dma + tsynchro = tcommSin
e the
on
ept of overlapping of a
tions is
ru
ial, it should be noted that the a
tionsinitiated by a non-blo
king
all are overlapped with the a
tions initiated by
alls following thenon-blo
king
all. On the
ontrary, a blo
king
all implies no overlapping of a
tions, sin
e afollowing
all
an be initiated only after the blo
king
all has
ompleted.In order to a
hieve a
tual overlapping of
omputation and
ommuni
ation, hardware shouldassist. The CPU and the NIC must be able to work simultaneously on di�erent tasks. The mostimportant issue is support from DMA, whi
h should exist and be enabled to the NIC. Anotheraspe
t is that the invo
ation of DMA
ommuni
ation should be done in user level (User-LevelDMA), without kernel intervention. Furthermore, zero-
opy
ommuni
ations should be used and�nally, the software pa
ketization pro
ess involved in every
ommuni
ation must be avoided. Allthese prerequisites are dis
ussed in the following se
tion.2.8 Hardware High Performan
e FeaturesRe
ent advan
es in high speed networks and improved mi
ropro
essor performan
e are making
lusters of workstations an appealing vehi
le for
ost e�e
tive parallel
omputing. The trendin parallel
omputing is to move away from
ustom-designed platforms of the established HPCindustry to general purpose systems
onsisting of loosely
oupled
omponents built up from

38 Preliminary Con
epts - Mathemati
al Ba
kground
single or multi-pro
essor workstations or PCs.The de-fa
to 100Mbps networking of
ommodity
lusters
an be a bottlene
k for many ap-pli
ations, when s
aling beyond a small number of nodes. The last years, new networking te
h-nologies su
h as SCI [Hel99℄, Myrinet and Gigabit Ethernet o�er in
reased bandwidth and lowstartup laten
ies, whi
h however, are never eÆ
iently utilized by user appli
ations. Therefore,high-performan
e
lusters are introdu
ed, whi
h provide the
omputationally intensive appli-
ations with in
reased performan
e using spe
ial
ommuni
ation primitives, su
h as Zero-CopyProto
ols and DMA transfers.2.8.1 Zero-Copy Proto
olsNetwork proto
ol sta
ks, su
h as TCP/IP, aggravate the
ommuni
ation pro
edure with theextra
opying of data sent or re
eived, to and from kernel spa
e, respe
tively. As Figure 2.18depi
ts, when sending data from an appli
ation (user spa
e) bu�er to the network, data mustbe initially
opied from the appli
ation bu�er to kernel bu�ers. TCP, IP and network headersmust be added and then, as a pa
ket, transferred to NIC's bu�er for transmission. A respe
tivepro
edure takes pla
e when data rea
h the re
eiving node.

TCP IP NET

1 2

user space

kernel space

TCP IP NET

buffer

su
pe

r f
as

t

NIC

packet 2packet 1

Figure 2.18: Single-Copy Proto
ol and pa
ketization pro
essThe previous sequen
e of a
tions is unavoidable when using lega
y network te
hnologies,but
ould be avoided when novel
ommuni
ation te
hnologies are used. SCI a
hieves Zero-CopyCommuni
ation, sin
e it supports a Distributed Shared Memory approa
h, whi
h is implementedusing kernel area memory mapped regions for
ommuni
ation. An SCI
ommuni
ation s
enarioinvolves the following stages: A pro
ess in an SCI node exports a memory segment, whi
h isimported by a pro
ess that resides in another SCI node. Every imported memory segment isdire
tly mapped to the PCI I/O spa
e of the PCI-SCI NIC. It is part of the importer's (pro
ess)virtual memory through the prior invo
ation of an SCIConne
tSegment() driver
all. When theimporting node needs to send data, it just writes them dire
tly to the imported memory segment(thus, no kernel
opies). Data are transferred to the exporter's memory and
ommuni
ation is

2.8 Hardware High Performan
e Features 39
performed, without any kernel intervention. No other data pro
essing is needed within ea
hsend.2.8.2 DMA transfersMessage data
an be usually transferred in two ways: Programmed I/O (PIO) mode and DMAmode. In PIO mode, CPU handles data transferring
ompletely, word by word. For example,data transferring of 1Kwords involves the initial
opying of these words from main memory tothe NIC's bu�ers with the aid of CPU. From a parallel appli
ation's point of view, these are
onsidered \lost" CPU
y
les, sin
e useful
al
ulations
ould have been exe
uted instead. Onthe
ontrary, using DMA mode, CPU just programs the NIC's DMA engine with the informationof whi
h data to transfer from main memory and where to send it. CPU is not used (or blo
kedfrom a program's perspe
tive) during the transfer and
an perform other (useful) tasks.The DSM feature of SCI allows the eÆ
ient use of its DMA
apabilities. Using spe
ialSCI driver
alls, the system returns physi
ally
ontiguous allo
ated memory. This is performedusing the get free pages() kernel routine. The allo
ated memory is �rst \pinned down"and then mapped to user's virtual memory (Figure 2.19). User is able to read/write thatmemory region like the ordinary memory regions returned by LIBC mallo
(). Despite thefa
t that DMA transfer is only invoked as a kernel system
all, the
omplete transfer of thespe
i�
 memory area will be performed with only one DMA invo
ation. On the
ontrary, evenif the NIC in Figure 2.18 was DMA enabled, a new DMA invo
ation should take pla
e for ea
h
{data,TCP,IP,NET} pa
ket, whi
h would be time
onsuming.

CPU

VMA

PMA

SCI

process

SCI
network

memory mapped
"RAM device"

segment

mapped to

Figure 2.19: Lo
ked and memory mapped \RAM devi
e" for SCI
ommuni
ations

40 Preliminary Con
epts - Mathemati
al Ba
kground

3Automati
 parallel
ode generationfor tiled nested loops
In this
hapter, we brie
y des
ribe an approa
h for the problem of automati
allygenerating parallel
ode for tiled nested loops. Our method is applied to generalparallelepiped tiles and non-re
tangular spa
e boundaries as well. It
onsists of twosteps:1. generating sequential tiled
ode2. parallelizing the sequential tiled
odeIn order to generate sequential
ode eÆ
iently, the original problem is divided intothe subproblems of enumerating the tiles and sweeping the points inside every tile.In order to parallelize the sequential tiled
ode, we address issues su
h as data dis-tribution, iteration distribution and automati
 message passing.

42 Automati
 parallel
ode generation for tiled nested loops3.1 Introdu
tionThe tiling transformation, as des
ribed in §2.6.2, has been used in literature in two di�erent
ontexts:
• in order to ensure the lo
ality of data referen
es and redu
e the overall exe
ution timethrough an eÆ
ient utilization of
a
he memory levels [Jim99℄
• in order to parallelize the exe
ution of a nested loop
ode segment with dense dependen
es,as des
ribed in §2.2 and §2.6.2 of this thesis.A lot of resear
h has been
ondu
ted,
on
erning the sele
tion of optimal tile size and shape, thatredu
e the
ommuni
ation
ost [BDRR94℄, [Xue97a℄, or the time pro
essors remain idle [HS02℄,[HCF99℄, [XC02℄. However, the parallelizing
ompilers
ommunity has been pessimisti
 aboutusing non-re
tangular tiling transformations to exe
ute nested loops in distributed memoryma
hines. General parallelepiped tiling has not been used in either
ommer
ial or resear
h
ompilers ([AMC97℄, [AL93℄, [CMZ92℄, [FHK+91℄, [SLR+95℄). This is due to the fa
t that asigni�
ant overhead is imposed by non-re
tangular tiling to both
ompile time and run time ofthe �nal parallel
ode. Apart from [ACN+00℄, [XC02℄, that present some experimental resultsfor 2-dimensional spa
es, all previous resear
h on non-re
tangular tiling is purely theoreti
al.All
omplete frameworks for the automati
 generation of parallel tiled
ode, su
h as the onepresented in [TX00℄,
an be applied only for re
tangular tiling. In this
hapter, as in [GAK03℄,we present a method for automati
ally produ
ing non-re
tangular tiled
ode without imposinga prohibitive overhead either at
ompile or at run time.The parallelization of a nested loop
ode segment, as depi
ted in Figure 3.1,
onsists of thefollowing three steps at minimum:1. A dependen
e analysis is
ondu
ted [Ban88℄, [Pug92℄, so as to determine the optimaltiling transformation, whi
h minimizes the
ommuni
ation overhead among pro
essors[BDRR94℄, [Xue97a℄, or the time pro
essors remain idle waiting for the data needed toarrive from neighboring pro
essors [HS02℄, [HCF99℄, [XC02℄.2. The initial
ode segment is
onverted to serial tiled
ode, a

ording to the tiling transfor-mation sele
ted in the previous step, as des
ribed in [GAK02b℄, [GAK03℄. This
onversionis
onsisted of two substeps:(a) Produ
ing the bounds of the tile spa
e from the bounds of the iteration spa
e and(b) Produ
ing the appropriate boundary expressions for traversing the internal of ea
htile, as well as determining the in
remental steps of ea
h loop index.3. Parallelizing the serial tiled
ode, as des
ribed in [GDAK02a℄. This step
onsists of(a) the distribution of data and
omputations among pro
essors and

3.2 Generation of Serial Tiled Code 43
(b) the automati
 generation of the message passing primitives
Initial
Code

Dependence
Analysis

Tiling
Transformation ParallelizationOptimal

Tiling
Sequential
Tiled Code

Parallel
Tiled CodeFigure 3.1: Automati
 parallel
ode generation for tiled iteration spa
es.After sele
ting the optimal tiling transformation, the initial untiled
ode segment should be
onverted into serial tiled
ode. Then, the serial tiled
ode should be parallelized.3.2 Generation of Serial Tiled CodeIn this se
tion, we elaborate on generating tiled
ode that will traverse an iteration spa
e Jntransformed by a tiling transformation. We
all this
ode sequential tiled
ode. By applyingtiling to Jn, we obtain the tile spa
e JS , the tile iteration spa
e TIS and the tile origin spa
e

TOS. In §2.6.2, it was shown that tiling transformation is a Zn −→ Z2n transformation, whi
hmeans that a point ~j ∈ Jn is transformed into a tuple of n-dimensional fa
tors (~ja, ~jb), where ~jaidenti�es the tile that the original point belongs to (~ja ∈ JS) and ~jb identi�es the
oordinates ofthe point relevant to the tile origin (~jb ∈ TIS). The sequential tiled
ode reorders the exe
utionof indi
es enfor
ed by their lexi
ographi
 order, resulting in an exe
ution order des
ribed by thefollowing s
heme:FOR (EVERY tile IN tile spa
e JS) TRAVERSE THE POINTS IN ITS INTERIORA

ording to the above, the sequential tiled
ode
onsists of a 2n-dimensional nested loop. The noutermost loops traverse the tile spa
e JS , using indi
es jS
1 , j

S
2 , . . . , j

S
n , and the n innermost loopstraverse the points within tile (jS

1 , j
S
2 , . . . , j

S
n), using indi
es j′1, j′2, . . . , j′n. We denote lSk , uS

k thelower and upper bounds of index jS
k , respe
tively. Similarly, we denote l′k, u′k the lower and upperbounds of index j′k. In all
ases, lower bounds (lSk or l′k) are of the form: max(lk,0, lk,1, . . .) andupper bounds (uS

k or u′k) of the form: min(uk,0, uk,1, . . .), where lk,j , uk,j are aÆne fun
tions ofthe outermost indi
es. The
al
ulation of fa
tors lS1 , . . . , lSn and uS
1 , . . . , u

S
n
orresponds to substep2a of §3.1, while the
al
ulation of fa
tors l′1, . . . , l′n and u′1, . . . , u′n
orresponds to substep 2b.3.2.1 Enumerating the tilesA
onventional approa
hAn
ourt and Irigoin in [AI91℄ dealt with the subproblem of traversing the tile spa
e, by
on-stru
ting an appropriate set of inequalities. A

ording to their approa
h, a tile ~jS belongs tothe tile spa
e JS (~jS ∈ JS), i� there is an iteration ~j, whi
h ful�lls both
riteria:

44 Automati
 parallel
ode generation for tiled nested loops
1. It belongs to the iteration spa
e Jn. That is, ~j ∈ Jn ⇔

B~j ≤ ~b(re
all formula (2.1)).2. It belongs to tile ~jS with origin iteration ~j0 = H−1 ~jS (re
all formula (2.6)). Note that,a

ording to the de�nitions given in §2.6.2, a point ~j belongs to a tile with tile origin ~j0,i� it satis�es the set of inequalities: S(~j − ~j0) ≤ ~s. Repla
ing in this set ~j0 = H−1 ~jS , it
an be equivalently written as:
(

−gI gH

gI −gH

)(
~jS

~j

)
≤ ~sCombining the above systems, we obtain the �nal system of inequalities:




0 B

−gI gH

gI −gH




(
~jS

~j

)
≤

(
~b

~s

) (3.1)An
ourt and Irigoin propose the appli
ation of Fourier-Motzkin elimination method to the abovesystem in order to obtain proper formulas for the lower and upper bounds of the 2n-dimensionalloop that will traverse the tiled spa
e. Note that the n outermost loop boundaries produ
ed areappropriate for traversing the tile spa
e. The n innermost loop boundaries are appropriate fors
anning the interior of tiles and
an be presently ignored.Example 3.1: Consider the following nested loop
ode segment:for (j1 = 0; j1 ≤ 39)for (j2 = 0; j2 ≤ 29){A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];
}The
orresponding iteration spa
e Jn is: Jn = {(j1, j2)|0 ≤ j1 ≤ 39, 0 ≤ j2 ≤ 29}. Let us applya tiling transformation de�ned by matrix

H =

[
1
5 − 1

10

− 1
20

3
20

] or, equivalently, by P =

[
6 4

2 8

]whi
h is legal [RS92℄ (sin
e HD ≥ 0) and has both
ommuni
ation and s
heduling-optimal shape([BDRR94℄, [HS98℄, [HS02℄, [HCF97℄, [Xue97a℄), for the spe
i�
 problem. Then, as shown in

3.2 Generation of Serial Tiled Code 45

p1=(6,2)

p2=(4,8)

j1

j2

h1=(1/5,-1/10)

h2=(-1/20,3/20)

Tile Iteration Space (TIS)

(b)

j1S

j2S Tile Space (JS)

(c)

(0,0)
(1,0)

(2,0)
(3,0)

(4,0)
(5,0)

(-1,0)

(0,1)
(1,1)

(-1,1)

(2,1)
(3,1)

(4,1)
(5,1)

(2,-1)
(3,-1)

(4,-2)

(5,-1)
(6,-1)

(1,-1)
(0,-1)

(-2,1)

(0,2)
(1,2)

(2,2)
(3,2)

(4,2)

j1

j2

(-1,2)
(-2,2)

(-2,3)
(-1,3)

(0,3)
(1,3)

(-3,3)

(-2,4) (2,3)(-3,4)

(6,0)

(7,-1)

(4,-1)

(5,-2)
(6,-2)

(7,-2)

(5,2)

Iteration Space (Jn)

tile origins
(a)

Figure 3.2: Example 3.1: Representation of the spa
es used.(a) The initial iteration spa
e is partitioned into identi
al parallelogram tiles, whi
h are identi�edby a unique ve
tor indi
ated inside ea
h tile. The origin of ea
h tile has been illustrated by agrey dot. Some of the origins may not belong to the initial iteration spa
e Jn. (b) The tileiteration spa
e in
ludes all iterations of tile (0, 0), whi
h starts at the axes origin. (
) The tilespa
e JS is derived from the iteration spa
e by formula (2.4). All iterations of the the same tilein sub�gure (a) are mapped to only one point in JS of sub�gure (
).

46 Automati
 parallel
ode generation for tiled nested loops
Figure 3.2b, TIS
ontains the points {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), . . . , (7, 5),

(7, 6), (7, 7), (7, 8), (8, 7), (8, 8), (8, 9), (9, 9)}. In addition, as shown in Figure 3.2
, Jn istransformed by matrix H to the tile spa
e JS = {(−3, 3), (−3, 4), (−2, 1), (−2, 2), (−2, 3),

(−2, 4), . . . , (6,−2), (6,−1), (6, 0), (7,−2), (7,−1)}. In the sequel, as shown by the grey dots inFigure 3.2a, the tile spa
e JS is transformed by matrix P to TOS = {(−6, 18), (−2, 26), (−8, 4),

(−4, 12), (0, 20), (4, 28), . . . , (28,−4), (32,−4), (36, 12), (34,−2), (38, 6)}.
The set of inequalities des
ribing the iteration spa
e Jn is:




1 0

0 1

−1 0

0 −1




(
j1

j2

)
≤




39

29

0

0


The system of inequalities S(~j − ~j0) ≤ ~s (see formulas (2.8), (2.9)) des
ribing a tile is (sin
e

g = 20): 


4 −2

−1 3

−4 2

1 −3




(
j1 − j01

j2 − j02

)
≤




19

19

0

0


Thus, a

ording to formula (3.1), the �nal system proposed my An
ourt and Irigoin for the
al
ulation of loop indi
es is:




0 0 1 0

0 0 0 1

0 0 −1 0

0 0 0 −1

−20 0 4 −2

0 −20 −1 3

20 0 −4 2

0 20 1 −3




(
~jS

~j

)
≤




39

29

0

0

19

19

0

0


This system of inequalities is not suitable for a nested loop
ode segment, sin
e it
ontainsno inequalities for the expressions of outer loop boundaries of jS

1 and jS
2 . An appli
ation ofthe Fourier-Motzkin elimination method (see §2.4)
an
onvert it to the equivalent system of

3.2 Generation of Serial Tiled Code 47
inequalities:




1 0 0 0

−1 0 0 0

1 4 0 0

0 1 0 0

3 2 0 0

−1 −4 0 0

−3 −2 0 0

0 −1 0 0

−5 0 1 0

0 20 1 0

−6 −4 1 0

0 0 1 0

0 −20 −1 0

5 0 −1 0

6 4 −1 0

0 0 −1 0

0 0 0 1

0 −20 −1 3

10 0 −2 1

0 0 0 −1

−10 0 2 −1

0 20 1 −3




(
~jS

~j

)
≤




7

3

14

4

19

4

4

2

19

87

9

39

19

0

0

0

29

19

0

0

9

0




(3.2)

Only the eight �rst rows of this system are useful for traversing the tile spa
e JS . We may
utthem o� and go on with the system of inequalities:



1 0

−1 0

1 4

0 1

3 2

−1 −4

−3 −2

0 −1




~jS ≤




7

3

14

4

19

4

4

2




48 Automati
 parallel
ode generation for tiled nested loops
An appli
ation of the ad-ho
 simpli�
ation method [BW95℄
an dete
t and eliminate two redun-dant inequalities. Finally, the simpli�ed system




1 0

−1 0

1 4

3 2

−1 −4

−3 −2




~jS ≤




7

3

14

19

4

4


may be used for automati
ally produ
ing the
ode, whi
h s
ans the tile spa
e:for(jS

1 =-3; jS
1 ≤7; jS

1 ++)for(jS
2 =max(⌈−4−jS

1
4 ⌉, ⌈

−4−3jS
1

2 ⌉); jS
2 ≤min(⌊14−jS

1
4 ⌋,⌊19−3jS

1
2 ⌋); jS

2 ++){Exe
ute tile (jS
1 , j

S
2)

}

Redu
ing the
ompile time overhead of tilingIn order to redu
e the overhead imposed at
ompile time by tiling, we should primarily redu
ethe
omplexity of the Fourier-Motzkin elimination method used. Re
all from §2.4 that it dependsdoubly exponentially on the number of loops involved. Thus, in order to de
rease the
ompiletime overhead, we should �rst of all examine whether we may redu
e the number of loop indi
esinvolved in the set of inequalities (3.1).The subproblem of traversing the tile spa
e JS has been
onsidered by many authors asan example of applying the non-unimodular tiling transformation to the original iterationspa
e. More spe
i�
ally, Ramanujam in [Ram92℄ and [Ram95℄ applied the non-unimodulartiling transformation to the set of inequalities B~j ≤ ~b des
ribing the iteration spa
e, as follows:
B~j ≤ ~b⇒ BH−1H~j ≤ ~b⇒

BP ~jS ≤ ~b (3.3)Here again, the appli
ation of Fourier-Motzkin elimination method to the derived system ofinequalities is proposed, in order to obtain
losed form formulas for tile bounds lS1 , . . . , lSn and
uS

1 , . . . , u
S
n .Unfortunately, the previous approa
h fails to enumerate tiles exa
tly. This is be
ause thesystem of inequalities in (3.3) is satis�ed by points in the tile spa
e JS , whose tile origins belongto Jn. However, as stated in §2.6.2, there exist some points in TOS that do not belong to Jn.

3.2 Generation of Serial Tiled Code 49
Although these points do not satisfy the pre
eding systems of inequalities, they must be traversedas well. In Figure 3.2a, tiles in the lower boundaries, su
h as (-3,3), (-2,1), (4,-2) and others, arenot s
anned by this method, be
ause their origins do not belong to the original iteration spa
e
Jn. Consequently, a modi�
ation is required, so that Fourier-Motzkin elimination method
ans
an all tiles
orre
tly. As shown in Figure 3.5, what is needed is a proper redu
tion of the lowerbounds and/or a proper in
rease of the upper bounds of our spa
e, in order to in
lude all tileorigins. Lemma 3.1 determines how mu
h we must expand spa
e bounds, in order to in
lude allpoints of TOS.Lemma 3.1 If we apply tiling transformation P to an iteration spa
e Jn, whose bounds areexpressed by the system of inequalities B~j ≤ ~b, then for all tile origins ~j0 ∈ TOS, it holds:

B~j0 ≤ ~b′, (3.4)where ~b′ is determined by the expression:
b′i = bi +

g − 1

g

n∑

r=1

(~βi · ~pr)
−, i = 1, . . . , n (3.5)where ~βi is the i-th row of matrix B, ~pr is the r-th
olumn of matrix P and (~βi · ~pr)

− =

max(−~βi · ~pr, 0).Proof: We suppose that point ~j ∈ Jn belongs to tile with origin ~j0. Sin
e P
onsists of nlinearly independent ve
tors, ~j
an be expressed as the sum of ~j0 and a linear
ombinationof the
olumn-ve
tors of the tiling matrix P :
~j = ~j0 +

n∑

l=1

λl~pl (3.6)In addition, as in formula (2.8), the following system of inequalities holds: 0 ≤ gH(~j− ~j0) ≤

(g − 1). The i-th row of this inequality
an be rewritten as follows: 0 ≤ ~hi · (~j − ~j0) ≤
g−1

g
,where ~hi is the i-th row-ve
tor of matrix H = P−1. Repla
ing in this expression by (3.6),we get:

0 ≤ ~hi ·
n∑

l=1

λl~pl ≤
g − 1

gAs P = H−1 it holds that ~hi · ~pi = 1 and ~hi · ~pl = 0 if i 6= l. Consequently, the last formula
an be rewritten as follows:
0 ≤ λi ≤

g − 1

gfor all i = 1, . . . , n. If multiplied by ~βk · ~pi, this inequality gives:1. If ~βk · ~pi ≥ 0: λi
~βk · ~pi ≥ 0

50 Automati
 parallel
ode generation for tiled nested loops
2. If ~βk · ~pi < 0: λi

~βk · ~pi ≥
g−1

g
~βk · ~piA

ording to the de�nitions of the symbol (~βk · ~pi)

− = max(− ~βk · ~pi, 0), the previous inequal-ities
an in every
ase be rewritten as follows: λi
~βk · ~pi ≥ − g−1

g
(~βk · ~pi)

− ⇒ −λi
~βk · ~pi ≤

g−1
g

(~βk · ~pi)
−. If added for i = 1, . . . , n, this inequality gives:

−

n∑

i=1

λi
~βk · ~pi ≤

g − 1

g

n∑

i=1

(~βk · ~pi)
− (3.7)For ea
h ~j ∈ Jn the system of inequalities B~j = ~b holds. The k-th row of this system
anbe written as follows: ~βk · ~j ≤ bk. We
an repla
e ~j in this inequality, using formula (3.6)as follows: ~βk · (~j0 +

n∑
i=1

λi~pi) ≤ bk ⇒ ~βk · ~j0 ≤ bk − ~βk · (
n∑

i=1

λi~pi)

⇒ ~βk · ~j0 ≤ bk −
n∑

i=1

λi(~βk · ~pi)If we
ombine this inequality with (3.7), we
on
lude that ~βk · ~j0 ≤ bk + g−1
g

n∑
i=1

(~βk · ~pi)
−.Thus, for ea
h tile with origin ~j0, whi
h has at least one point in the initial iteration spa
e,it holds that B~j0 ≤ ~b′, where the ve
tor ~b′ is
onstru
ted so as its k-th element is given bythe form: b′k = bk + g−1

g

n∑
i=1

(~βk · ~pi)
−. ⊣If we work with the tile spa
e JS and take into a

ount that ~j0 = P ~jS , we equivalently getthe system of inequalities:
BP ~jS ≤ ~b′ (3.8)If it is given that matrix B
onsists of only integer elements, ~b′,
an be determined by theexpression:

b′i = bi + ⌊
g − 1

g

n∑

r=1

(~βi · ~pr)
−⌋, i = 1, . . . , n (3.9)Geometri
al interpretation: The term added to ea
h element of ~b expresses a parallel shiftof the
orresponding bound of the initial spa
e. In Figure 3.3, we present an example of ourmethod. Ea
h row ~βi of matrix B expresses a ve
tor verti
al to the
orresponding bound of theiteration spa
e with its dire
tion outwards. The equation of this boundary surfa
e is ~βi · ~x = bi.A parallel shift of this surfa
e by a ve
tor ~x0 is expressed by the equation ~βi · (~x − ~x0) = bi ⇔

~βi ·~x = bi + ~βi · ~x0. As shown in Figure 3.3, we shift a boundary surfa
e by ve
tor −~pr, i� the tileedge-ve
tor ~pr forms an angle greater than 90o with ve
tor ~βi (as the angles between the ve
tors
~β1 and ~p1, ~β1 and ~p2, ~β3 and ~p1, ~β3 and ~p2, ~β4 and ~p1 of Figure 3.3), or, equivalently, i� ~pr · ~βi < 0.

3.2 Generation of Serial Tiled Code 51

j1

j2

p2
β1

β3

p1

β2

β4

p1

- p1

β4

- p1

- p2

p1β1
p2β1

- p2

- p1

p2β3

p1β3Figure 3.3: Expanding iteration spa
e bounds to in
lude all tile origins.The dark grey area
orresponds to the initial iteration spa
e area. The light grey area indi
atesthe expansion of the iteration spa
e, in order to in
lude all tile origins. It is shown that aniteration spa
e boundary is shifted, i� there is an inverse tiling ve
tor ~pr, whi
h traverses thisboundary outside → inside.This fa
t
an be expressed as follows: if the dot produ
t of ~pr (one of the
olumns of the matrix
P) and ~βi (a row of B) is negative, then this dot produ
t is subtra
ted from the
onstant bi.Equivalently, in formula (3.5) the term (~βi · ~pr)

− is added to the
onstant bi for all ve
tors ~pr.The multiplying fa
tor g−1
g expresses the fa
t that a tile is a semiopen hyperparallelepiped andthus we need not
ontain in the tile spa
e the tiles whi
h just tou
h the initial iteration spa
e.Note, however, it was proven that the expanded spa
e in
ludes all origins of tiles in JS .It was not proven that it
ontains only origins of tiles in JS . In other words, this expansionof bounds may in
lude some redundant tiles, whose origins belong to the extended spa
e, buttheir internal points remain outside the original iteration spa
e. These tiles will be a

essed, buttheir internal points will not be swept, as it will be shown next, thus imposing little
omputation

52 Automati
 parallel
ode generation for tiled nested loops
1p

2p

iβ

1p

1p

2p

1p

2p

iβ

Jn
Jn JnJnFigure 3.4: Expanding iteration spa
e bounds to in
lude all tile origins.The grey dots
orrespond to iteration inside Jn, while the white dots
orrespond to iterationsoutside Jn. This �gure indi
ates that the expansion of the iteration spa
e should be less thanthe dot produ
t of ve
tors ~βi and ~pr, so as not to in
lude tiled that just tou
h the initial iterationspa
e boundaries, with no integer points inside Jn. The dashed grey lines
orresponds to theexpansion of bounds, a

ording to the dot produ
t of ve
tors ~βi and ~pr. The solid grey lines
orrespond to the �nal expansion, so as not to in
lude a lot of redundant tiles.

overhead in the exe
ution of the sequential tiled
ode.
Example 3.2: We will now enumerate the tiles generated by the tiling transformationdes
ribed in Example 3.1, using the method des
ribed just above. Following our approa
h,we should
onstru
t the system of inequalities in (3.8) making use of the expression in (3.9).Expression (3.9) in our
ase gives ~b′ =

(
39 29 9 9

)T and thus, the system in (3.8) be
omes:



6 4

2 8

−6 −4

−2 −8




(
jS
1

jS
2

)
≤




39

29

9

9


The expansion of bounds for this example is shown in Figure 3.5. An appli
ation of the Fourier-

3.2 Generation of Serial Tiled Code 53
Motzkin elimination method
an
onvert this system to its equivalent:




1 0

−1 0

3 2

1 4

−3 −2

−1 −4




(
jS
1

jS
2

)
≤




8

4

19

14

4

4


Note that the implementation used for the Fourier-Motzkin elimination method
an take intoa

ount that index variables
an only be integer, and further simplify the �nal expressions,applying the
oor or
eiling fun
tions where appropriate. Consequently, a loop that enumeratesthe tiles in our
ase has the form:for (jS

1 = −4; jS
1 ≤ 8; jS

1 ++)for (jS
2 =max(⌈−4−3jS

1
2 ⌉, ⌈

−4−jS
1

4 ⌉); jS
2 ≤min(⌊19−3jS

1
2 ⌋, ⌊

14−jS
1

4 ⌋); jS
2 ++) {Exe
ute tile (jS

1 , j
S
2)

}Note that tiles (8,−3) and (−4, 4) are redundant (Figure 3.5).
3.2.2 S
anning the points within a tileA
onventional approa
hIn order to traverse the internal points of every tile, one
an use the n innermost loop indi
esof the system of inequalities produ
ed when applying the Fourier-Motzkin elimination methodto the system (3.1). However, it is more eÆ
ient to separately apply the Fourier-Motzkinelimination method to the systems:1.

B~j ≤ ~b (3.10)Re
all from formula (2.1) that this systems indi
ates that iteration ~j belongs to the itera-tion spa
e.

54 Automati
 parallel
ode generation for tiled nested loops

(0,0)
(1,0)

(2,0)
(3,0)

(4,0)
(5,0)

(-1,0)

(0,1)
(1,1)

(-1,1)

(2,1)
(3,1)

(4,1)
(5,1)

(2,-1)
(3,-1)

(4,-2)

(5,-1)
(6,-1)

(1,-1)
(0,-1)

(-2,1)

(0,2)
(1,2)

(2,2)
(3,2)

(4,2)

j1

j2

(-1,2)
(-2,2)

(-2,3)
(-1,3)

(0,3) (1,3)

(-3,3)

(-2,4) (2,3)(-3,4)

(6,0)

(7,-1)

(4,-1)

(5,-2)
(6,-2)

(7,-2)

(5,2)

redundant
tile

redundant
tile

Figure 3.5: Example 3.2: Expanding iteration spa
e bounds to in
lude all tile origins.The dark grey area
orresponds to the iteration spa
e area. The light grey area indi
ates theexpansion of the iteration spa
e, in order to in
lude all tile origins, a

ording to formulas (3.4),(3.5). Unfortunately, the expanded area
ontains also two tile origins, whi
h do not
orrespondto a tile in JS . Fortunately, they may be lo
ated only in near the edges of the expanded iterationspa
e. Thus, their number is negligible in
omparison to the number of tiles of JS .2.
(

gH

−gH

)(
~j − ~j0

)
≤

(
(g − 1)~1

~0

) (3.11)Re
all from formulas (2.8), (2.9) that this system indi
ates that iteration ~j belongs to tilewith origin iteration ~j0 = H−1 ~jS .This modi�
ation is used in our implementation for automati
ally produ
ing tiled
ode. Asdedu
ed during our experimentation, it results to redu
ing both
ompile and run time of the�nal
ode.Compile time is redu
ed be
ause there is no more need for applying the ad-Ho
 and ex-a
t simpli�
ation methods to the whole system produ
ed by (3.1), but only to its subsystem
orresponding to the n outer loop indi
es.

3.2 Generation of Serial Tiled Code 55
Run time is redu
ed be
ause the
ombination of inequalities produ
ed by (3.10) and (3.11)are less than inequalities produ
ed by (3.1). This is partly due to the fa
t that the exa
tsimpli�
ation method may not be able to dete
t the redundan
y of an inequality in Zn if it isnot redundant in Rn. On the other hand, inequalities originating from di�erent systems (3.10)and (3.11) are rarely redundant in respe
t to ea
h other. Thus, it is almost improbable to havean extra inequality in the �nal system due to not applying the simpli�
ation methods to the
ombination of systems (3.10), (3.11).In addition, when this modi�
ation is used, it is possible to
he
k even less inequalities fortiles that are not lo
ated near a boundary of the iteration spa
e, at run time. If a tile
rosses theiteration spa
e boundaries, then all inequalities produ
ed by (3.10), (3.11) should be
he
kedduring the s
an of the interior of the tile. Otherwise, if a tile does not
ross any iterationboundary, only inequalities derived from (3.11) may be
he
ked at run time. This simpli�
ationpresupposes the use of a method for distinguishing tiles into internal and boundary. As internalwe may
hara
terize a tile with all its verti
es in Jn.Lemma 3.2 If all 2n verti
es of a tile (~c = ~j0 +

n∑
i=1

xi
g−1

g ~pi for xi ∈ {0, 1}, i = 1, . . . , n) belongto the
onvex iteration spa
e Jn, then all iterations of this tile belong to Jn.Proof: A

ording to Lemma C.1, in order to prove this lemma, we may only prove thatevery iteration inside a tile ~jS may be
al
ulated by an expression of the form (C.1).In the proof of Lemma 3.1, we have written that every iteration ~j
an be expressed as thesum of its tile origin ~j0 and a linear
ombination of the
olumn-ve
tors of the inverse tilingmatrix P :
~j = ~j0 +

n∑

i=1

λi~pi (3.12)where 0 ≤ λi ≤ g−1
g

for all i = 1, . . . , n. Equation (3.12)
an be equivalently rewritten asfollows
~j =

∑

∀xi ∈ {0, 1}

i = 1..n

[
n∏

i=1

[(
1 −

λig

g − 1

)
(1 − xi) +

λig

g − 1
xi

](
~j0 +

n∑

i=1

xi

g − 1

g
~pi

)] (3.13)sin
e1. The total multiplying fa
tor of ~j0 equals to 1.
∑

∀xi ∈ {0, 1}

i = 1..n

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
=

∑
∀xi ∈ {0, 1}

i = 1..n− 1

xn = 0

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
+

56 Automati
 parallel
ode generation for tiled nested loops
∑

∀xi ∈ {0, 1}

i = 1..n− 1

xn = 1

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
=

∑
∀xi ∈ {0, 1}

i = 1..n− 1

n−1∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

] (
1 − λng

g−1

)
+

∑
∀xi ∈ {0, 1}

i = 1..n− 1

n−1∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
λng
g−1 =

∑
∀xi ∈ {0, 1}

i = 1..n− 1

n−1∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]Eliminating this way the rest of the variable xi, i = 1, . . . , n− 1, we
on
lude that
∑

∀xi ∈ {0, 1}

i = 1..n

n∏

i=1

[(
1 −

λig

g − 1

)
(1 − xi) +

λig

g − 1
xi

]
= 1 (3.14)

2. The total multiplying fa
tor of ~pl, (l = 1, . . . , n) equals to λl.
∑

∀xi ∈ {0, 1}

i = 1..n

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
xl

g−1
g

=

∑
∀xi ∈ {0, 1}

i = 1..n, i 6= l

xl = 0

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
xl

g−1
g

+

∑
∀xi ∈ {0, 1}

i = 1..n, i 6= l

xl = 1

n∏
i=1

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
xl

g−1
g

=

0 +
∑

∀xi ∈ {0, 1}

i = 1..n, i 6= l

∏
i=1..n,i 6=l

[(
1 − λig

g−1

)
(1 − xi) + λig

g−1xi

]
λlg
g−1

g−1
g

(3.14)
= λlFrom (3.13), (3.14), we
on
lude that iteration ~j
an be expressed in respe
t to verti
es

~c by a formula of the type (C.1). Thus, if all verti
es ~c belong to Jn, then iteration ~j of thistile also belongs to Jn

⊣

Example 3.3: In order to s
an the tiles enumerated by the
ode produ
ed in Example 3.1, wemay use the 14 remaining inequalities of the system (3.2). Otherwise, we may use a
ombination

3.2 Generation of Serial Tiled Code 57
of systems 



1 0

0 1

−1 0

0 −1




(
j1

j2

)
≤




39

29

0

0



orresponding to formula (3.10) and




4 −2

−1 3

−4 2

1 −3




(
j1 − j01

j2 − j02

)
≤




19

19

0

0



orresponding to formula (3.11). The former system of inequalities has already the requiredform and need not be
onverted through a Fourier-Motzkin elimination. An appli
ation of theFourier-Motzkin elimination method to the latter system of inequalities results to the equivalentsystem: 



1 0

−1 0

−1 3

−2 1

2 −1

1 −3




(
j1 − j01

j2 − j02

)
≤




9

0

19

0

9

0


Note that this way only 4 + 6 = 10 inequalities should be
he
ked for ea
h iteration, insteadof 14, as dedu
ed from formula (3.1) in Example 3.1. In sequel, one
an �ll in the missing partof the
ode produ
ed in Example 3.1, a

ording to the systems of inequalities des
ribed justabove. for(jS

1 =-3; jS
1 ≤7; jS

1 ++)for(jS
2 =max(⌈−4−jS

1
4 ⌉, ⌈

−4−3jS
1

2 ⌉); jS
2 ≤min(⌊14−jS

1
4 ⌋,⌊19−3jS

1
2 ⌋); jS

2 ++){/* Exe
ute tile (jS
1 , j

S
2) */

j01=6jS
1 +4jS

2 ; /* Cal
ulate ~j0 = P ~jS */
j02=2jS

1 +8jS
2 ;for(j1=max(0, j01); j1 ≤min(39, j01+9); j1++)for(j2=max(0, j02-9+2(j1 − j01), j02+⌈ j1−j01

3 ⌉);
j2 ≤min(29, j02+⌊19+(j1−j01)

3 ⌋, j02+2(j1 − j01)); j2++){/* Exe
ute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];
}

}

58 Automati
 parallel
ode generation for tiled nested loops
A redu
tion of the run time
an be a
hieved by distinguishing the tiles into internal andboundary, a

ording to Lemma 3.2. Su
h a dis
rimination implies a
he
k whether all verti
esof the tile belong to Jn. This
he
k is ne
essary to be
ondu
ted on
e for all 2n verti
es of ea
htile, while without this dis
rimination, the iteration spa
e boundaries are
he
ked on
e for ea
hiteration. Thus, the above
ode segment
an be rewritten as follows;for(jS

1 =-3; jS
1 ≤7; jS

1 ++)for(jS
2 =max(⌈−4−jS

1
4 ⌉, ⌈

−4−3jS
1

2 ⌉); jS
2 ≤min(⌊14−jS

1
4 ⌋,⌊19−3jS

1
2 ⌋); jS

2 ++){/* Exe
ute tile (jS
1 , j

S
2) */

j01=6jS
1 +4jS

2 ; /* Cal
ulate ~j0 = P ~jS */
j02=2jS

1 +8jS
2 ;/* Che
k whether tile (jS

1 , j
S
2)
rosses the iteration spa
e *//* boundaries */
he
k=TILE IN;for(x1=0; x1 ≤1; x1++)for(x2=0; x2 ≤1; x2++){/* Cal
ulate vertex ~c = ~j0 +

n∑
i=1

xi~pi for all xi ∈ {0, 1} */
c1=j01+6x1+4x2;
c2=j02+2x1+8x2;/* Che
k whether ~c ∈ Jn */if(c1<0 || c1>39 || c2<0 || c2>29){
he
k=TILE CROSS;break;
}if(
he
k==TILE CROSS) break;

}if(
he
k==TILE CROSS) {/* Exe
ute tile (jS
1 , j

S
2) in
ase it may
ross *//* the iteration spa
e boundaries */for(j1=max(0, j01); j1 ≤min(39, j01+9); j1++)for(j2=max(0, j02-9+2(j1 − j01), j02+⌈ j1−j01

3 ⌉);
j2 ≤min(29, j02+⌊19+(j1−j01)

3 ⌋, j02+2(j1 − j01)); j2++){/* Exe
ute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];
}

}else {/* Exe
ute tile (jS
1 , j

S
2) in
ase it does not
ross *//* the iteration spa
e boundaries */for(j1=j01; j1 ≤ j01+9; j1++)for(j2=max(j02-9+2(j1 − j01), j02+⌈ j1−j01

3 ⌉);
j2 ≤min(j02+⌊19+(j1−j01)

3 ⌋, j02+2(j1 − j01)); j2++){/* Exe
ute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];
}

}
}

3.2 Generation of Serial Tiled Code 59
Note that the generation of the above
ode segment is
ompletely automated, when theinitial iteration spa
e and the tiling transformation are given. In addition, the loop boundsgenerated in this example for the n innermost loop indi
es
an be also
ombined with the loopbounds generated for the n outermost loop indi
es in Example 3.2.

Redu
ing the run time overhead of tilingIn order to a
hieve a redu
ed run time
omplexity of the
ode generated automati
ally, as seenin Example 3.3, one should redu
e the
omplexity of the loop bounds, whi
h are
he
ked for alltiles. That is, one should redu
e the
omplexity of inequalities generated from formula (3.11). Itis a
hieved by applying a linear transformation to the initial iteration spa
e, so as to transformnon-re
tangular tiles into re
tangular ones.

(a) a conventional approach (b) reducing the run-time overheadFigure 3.6: S
anning the iterations of a tile.(a) Iterations of a tile are exe
uted a

ording to their lexi
ographi
 order, parallely to the axes.(b) Iterations are s
anned in su
h an order that tra
es to be parallel to the tile edges.The method is based on the use of a non-unimodular transformation. The �nal goal is totraverse the TIS and then slide the points of TIS properly, so as to s
an all points of Jn. Inorder to a
hieve this, the TIS is transformed to a re
tangular spa
e,
alled the transformed tileiteration spa
e (TTIS). The TTIS is traversed with an n-dimensional nested loop and thenthe indi
es of the loop are transformed, so as to return to the proper points of the TIS.In other words, there is needed a transformation pair (P ′, H ′): TTIS P ′

−→ TIS and TIS H′

−→

TTIS (Fig. 3.7). Intuitively, P ′ should be parallel to the tile sides, that is, the
olumn ve
torsof P ′ should be parallel to the
olumn ve
tors of P . This is equivalent to the row ve
tors

60 Automati
 parallel
ode generation for tiled nested loops
of H ′ being parallel to the row ve
tors of H. In addition to this, we demand the latti
e of
H ′ to be an integer spa
e for integer loop indi
es to be able to traverse it. Formally, an n-dimensional transformation H ′ : H ′ = V H must be found, where V is an n× n diagonal matrixand L(H ′) ⊆ Zn. The following lemma proves that the se
ond requirement is satis�ed if andonly if H ′ is integral.

 ��

Figure 3.7: Traverse the TIS with a non-unimodular transformation.In order to traverse the tile iteration spa
e parallely to the tile edges, as indi
ated in Figure 3.6(b),the non-re
tangular tile iteration spa
e should be transformed into a re
tangular one, using a non-unimodular transformation matrix H ′. Sin
e H ′ is not unimodular, the transformed spa
e mayin
lude integer points with no integer
oeÆ
ient in the initial spa
e. They are depi
ted by whitedots.Lemma 3.3 ~j′ = A~j ∈ Zn ∀~j ∈ Zn i� A is integral.Proof: If A is integral, it is
lear that ~j′ ∈ Zn∀~j ∈ Zn.Suppose that ~j′ ∈ Zn∀~j ∈ Zn. We shall prove that A is integral:It holds ~j′ ∈ Zn for ~j = ûk, where ûk is the k-th unitary ve
tor,
ûk = (uk1, . . . , ukn), ukk = 1, uki = 0, i 6= kThus,

~j′ = Aûk =

(
n∑

i=1

a1iuki,

n∑

i=1

a2iuki, . . . ,

n∑

i=1

aniuki

)T

= [a1k, a2k, . . . , ank]T ∈ ZnThis holds for all ûk, k = 1 . . . n, therefore all elements of A are integer numbers. ⊣

3.2 Generation of Serial Tiled Code 61
Let us
onstru
t V in the following way: Every diagonal element vkk is the smallest integersu
h that vkk

~hk is integral, where ~hk is the k-th row of matrix H. Thus, both requirements for
H ′ are satis�ed. It is obvious that H ′ is a non-unimodular transformation. This means thatthe transformed tile iteration spa
e
ontains holes. In Figure 3.7, the holes in the TTIS aredepi
ted with white dots, while the a
tual points are depi
ted with bla
k ones. So, in order totraverse the TIS, we have to s
an all a
tual points of the TTIS and then transform them ba
kusing matrix P ′. We
an apply any of the methods presented in [Ram92℄, [Ram95℄, [Xue94℄,[Li93℄, [FLV95℄ to traverse the TTIS. However, we will avoid the appli
ation of Fourier-Motzkinelimination method by taking advantage of the tile shape regularity.We use an n-dimensional nested loop with iterations indexed by ~j′ = (j′1, j

′
2, . . . , j

′
n), in orderto traverse the a
tual points of the TTIS. Repla
ing ~j = P ′~j′ in formula (2.7), the boundariesof TTIS are given by the system of inequalities: 0 ≤ HP ′~j′ < 1 ⇔ 0 ≤ V −1~j′ < 1 ⇔

0 ≤ j′k ≤ vkk − 1, for all k = 1, . . . , n (3.15)The bounds of the indi
es j′k are determined by formulas (3.15), without applying the Fourier-Motzkin elimination method to the system of inequalities (3.11).However, the in
rement step ck of an index j′k is not ne
essarily 1. In addition to this, ifindex j′k is in
remented by ck, indi
es j′k+1, . . . , j
′
n should not be initialized at 0. Suppose thatfor a
ertain index ve
tor ~j′, it holds P ′~j′ ∈ Zn. The �rst question is how mu
h to in
rementthe innermost index j′n so that the next swept point is also integral. Formally, we sear
h theminimum cn ∈ Z su
h that P ′

(
j′1 j′2 . . . j′n + cn

)T
∈ Zn. After determining cn, the nextstep is to
al
ulate the in
rement step of index j′n−1 so that the next swept point is also integral.In this
ase, it is possible that index j′n should also be in
remented by an o�set an(n−1) : 0 ≤

an(n−1) < cn. In the general
ase of index j′k we need to determine ck, a(k+1)k, . . . , ank su
hthat: P ′
(
j′1 . . . j′k + ck j′k+1 + a(k+1)k . . . j′n + ank

)T
∈ Zn. Every index j′k has k − 1di�erent in
remental o�sets aki, depending on ea
h of the in
rement steps ci of the k − 1 outerindi
es j′i. These o�sets are ak1, . . . , ak(k−1). The following lemma proves that in
rement steps

ck and o�sets akl, (k = 1 . . . n and l = 1 . . . k−1), are dire
tly obtained from the hermite normalform of matrix H ′, denoted H̃ ′.Lemma 3.4 If H̃ ′ is the
olumn HNF of H ′ and ~j′ = (j′1, j
′
2, . . . , j

′
n) is the index ve
tor usedto traverse the a
tual points of L(H ′), then the in
rement step (stride) for index j′k is ck = h̃′kkand the in
remental o�sets are akl = h̃′kl, (k = 1 . . . n and l = 1 . . . k − 1).Proof: It holds L(H ′) = L(H̃ ′). Thus, ~0 ∈ L(H ′) and the
olumns of H̃ ′ belong to L(H ′).Suppose ~x ∈ Zn/{~0} with the following properties: xi = 0 for i < k and 0 ≤ xi ≤ h̃′ik for

k ≤ i ≤ n. It suÆ
es to prove that ~x = ~hk.

62 Automati
 parallel
ode generation for tiled nested loops
Suppose that ~x ∈ L(H ′), whi
h means that ∃~j ∈ Zn : H̃ ′~j = ~x. H̃ ′ is a lower triangularnon-negative matrix and thus it holds: x1 = h̃′11j1 = 0 ⇒ j1 = 0. Similarly, ji = 0 for i < k.In the sequel, it holds: xk = h̃′kkjk. A

ording to the above, it holds: 0 ≤ xk = h̃′kkjk ≤

h̃′kk ⇒ 0 ≤ jk ≤ 1. In addition, 0 ≤ xk+1 = h̃′(k+1)kjk + h̃′(k+1)(k+1)jk+1 ≤ h̃′(k+1)k. Sin
e
h̃′(k+1)(k+1) > h̃′(k+1)k ⇒ jk+1 = 0. Similarly, ji = 0 for i > k + 1. Consequently, sin
e
~x 6= ~0, ~x is the k − th
olumn of H̃ ′. ⊣

 ��

Figure 3.8: Steps and initial o�sets in TTIS derived from matrix H̃ ′A

ording to the above analysis, the point that will be traversed using the next instantiationof indi
es is
al
ulated from the
urrent instantiation, sin
e steps and in
remental o�sets areadded to the
urrent indi
es. Spe
ial
are is taken so that every time the index ve
tor ~j′ =

(j′1, . . . , j
′
n) is to be modi�ed, the new index ve
tor ~j′ is
al
ulated as a sum of
urrent ~j′ anda multiple of a
olumn-ve
tor of H̃ ′. Thus, assuming that the
urrent instantiation ~j′ ∈ L(H ′),we ensure that the next point to be traversed remains in L(H ′).Theorem 3.1 The following n-dimensional nested loop traverses all points ~j′ ∈ TTISfor(j′1=0, . . . , j′n=0; j′1 ≤ v11-1; j′1+=h̃′11, . . . , j′n+=h̃′n1)for(j′n+ = ⌈

−j′2eh′
22
⌉ ∗ h̃′n2, . . . , j

′
2+ = ⌈

−j′2eh′
22
⌉ ∗ h̃′22; j′2 ≤ v22 − 1;
j′2+ = h̃′22, . . . , j

′
n+ = h̃′n2)

. . .for(j′n+ = ⌈ −j′neh′
nn
⌉ ∗ h̃′nn; j′n ≤ vnn − 1; j′n+ = h̃′nn){Loop body

}We now need to adjust the above loop, whi
h sweeps all points in TTIS, in order to traversethe internal points of any tile in JS . If ~j′ ∈ TTIS is the point that is derived from the indi
esof the former loop and ~jS ∈ JS is the tile, whose internal points ~j ∈ Jn we want to traverse, itwill hold: ~j = ~j0 +P ′~j′ = P ~jS +P ′~j′, where ~j0 = P ~jS ∈ TOS is the tile origin, and P ′~j′ ∈ TISis the
orresponding to ~j′ point in TIS. Sin
e P = V P ′, the last equality
an be equivalently

3.2 Generation of Serial Tiled Code 63
rewritten as follows:

~j = P ′(V ~jS + ~j′) (3.16)Spe
ial attention also needs to be paid so that the points traversed do not over
ome the originalspa
e boundaries. As we have mentioned before, a point ~j ∈ Jn satis�es the following set ofinequalities: B~j ≤ ~b. Repla
ing ~j by the above equation (3.16), we have:
BP ′(V ~jS + ~j′) ≤ ~b (3.17)By applying the Fourier-Motzkin elimination method to this set of inequalities, we obtain properexpressions for ~j′, so that we do not
ross the original spa
e boundaries. As dedu
ed for systems(3.10), (3.11), system (3.17) should be used in
ombination with inequalities (3.15).Example 3.4: Let us
onsider the same algorithm as in the previous examples. We will nowsweep the internal points of tiles with the use of the method des
ribed just above. We need thefollowing matri
es: H ′ =

[
2 −1

−1 3

] and V =

[
10 0

0 20

]. A

ordingly, P ′ =

[
3
5

1
5

1
5

2
5

]. TheHermite Normal Form of matrix H ′ is H̃ ′ =

[
1 0

2 5

]
=

[
2 −1

−1 3

][
1 1

1 2

] and thus, asshown in Figure 3.8, c1 = h̃′11 = 1, c2 = h̃′22 = 5, a21 = h̃′21 = 2. Consequently, the
ode thattraverses the indi
es inside every internal tile, a

ording to Theorem 3.1, is:/* Cal
ulate ~j′0 = V ~jS */
j′01=10jS

1 ;
j′02=20jS

2 ;for (j′1 = 0, j′2 = 0; j′1 ≤ 9; j′1+ = 1, j′2+ = 2)for (j′2+ = ⌈
−j′2
5 ⌉ ∗ 5; j′2 ≤ 19; j′2+ = 5) {/* Cal
ulate ~j = P ′(V ~jS + ~j′) */

j1=3
5(j′01 + j′1)+1

5(j′02 + j′2);
j2=1

5(j′01 + j′1)+2
5(j′02 + j′2);/* Exe
ute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];

}In order to exa
tly s
an the internal of boundary tiles, we
onstru
t matrix
[BP ′|~b] =




3
5

1
5 39

1
5

2
5 29

−3
5 −1

5 0

−1
5 −2

5 0




64 Automati
 parallel
ode generation for tiled nested loops
The appli
ation of Fourier-Motzkin elimination method on this matrix gives:




1 0 78

−1 0 29

3 1 195

1 2 145

−3 −1 0

−1 −2 0


Consequently, the
ode that traverses the indi
es inside tiles, whi
h
ut the iteration spa
ebounds, is:/* Cal
ulate ~j′0 = V ~jS */

j′01=10jS
1 ;

j′02=20jS
2 ;

l′1 =max(0,−29− j′01);
u′1 =min(9 /* v11-1 */, 78 − j′01);for (j′1 = l′1, j

′
2 = l′1 ∗ 2; j′1 ≤ u′1; j′1+ = 1, j′2+ = 2) {

l′2 =max(0,−3(j′01 + j′1) − j′02, ⌈
−(j′01+j′1)

2 ⌉ − j′02);
u′2 =min(19 /* v22-1 */, 195 − 3(j′01 + j′1) − j′02, ⌊

145−(j′01+j′1)
2 ⌋ − j′02);for (j′2+ = ⌈

l′2−j′2
5 ⌉ ∗ 5; j′2 ≤′ b2; j′2+ = 5) {/* Cal
ulate ~j = P ′(V ~jS + ~j′) */

j1=3
5(j′01 + j′1)+1

5(j′02 + j′2);
j1=1

5(j′01 + j′1)+2
5(j′02 + j′2);/* Exe
ute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];

}
}Using the tile spa
e boundaries
al
ulated in Example 3.2, and
ombining the
ode segmentsprodu
ed just above for internal tiles and for tiles
rossing the iteration spa
e boundaries, weget the �nal
ode segment:for (jS

1 = −4; jS
1 ≤ 8; jS

1 ++)for (jS
2 =max(⌈−4−3jS

1
2 ⌉, ⌈

−4−jS
1

4 ⌉); jS
2 ≤min(⌊19−3jS

1
2 ⌋, ⌊

14−jS
1

4 ⌋); jS
2 ++) {/* Exe
ute tile (jS

1 , j
S
2) *//* Cal
ulate ~j′0 = V ~jS */

j′01=10jS
1 ; /* This line
ould be pla
ed outside loop jS

2 */
j′02=20jS

2 ;/* Che
k whether tile (jS
1 , j

S
2)
rosses the iteration spa
e *//* boundaries */
he
k=TILE IN;for(x1=0; x1 ≤1; x1++){

c1=j′01+9x1;

3.2 Generation of Serial Tiled Code 65
if(c1<-29 || c1>78) {
he
k=TILE CROSS; break; }for(x2=0; x2 ≤1; x2++){
c2=j′02+19x2;/* Che
k whether ~c ∈ Jn */if(c2<max(-3c1, ⌈−c1

2 ⌉) || c2>min(195-3c1, ⌊145−c1
2 ⌋)){
he
k=TILE CROSS; break;

}if(
he
k==TILE CROSS) break;
}

}if(
he
k==TILE CROSS) {/* Exe
ute tile (jS
1 , j

S
2) in
ase it may
ross *//* the iteration spa
e boundaries */

l′1 =max(0,−29− j′01);
u′1 =min(9 /* v11-1 */, 78 − j′01);for (j′1 = l′1, j

′
2 = l′1 ∗ 2; j′1 ≤ u′1; j′1+ = 1, j′2+ = 2) {

l′2 =max(0,−3(j′01 + j′1) − j′02, ⌈
−(j′01+j′1)

2 ⌉ − j′02);
u′2 =min(19 /* v22-1 */, 195 − 3(j′01 + j′1) − j′02, ⌊

145−(j′01+j′1)
2 ⌋ − j′02);for (j′2+ = ⌈

l′2−j′2
5 ⌉ ∗ 5; j′2 ≤′ b2; j′2+ = 5) {/* Cal
ulate ~j = P ′(V ~jS + ~j′) */

j1=3
5(j′01 + j′1)+1

5(j′02 + j′2);
j1=1

5(j′01 + j′1)+2
5(j′02 + j′2);/* Exe
ute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];

}
}

}else {for (j′1 = 0, j′2 = 0; j′1 ≤ 9; j′1+ = 1, j′2+ = 2)for (j′2+ = ⌈
−j′2
5 ⌉ ∗ 5; j′2 ≤ 19; j′2+ = 5) {/* Cal
ulate ~j = P ′(V ~jS + ~j′) */

j1=3
5(j′01 + j′1)+1

5(j′02 + j′2);
j1=1

5(j′01 + j′1)+2
5(j′02 + j′2);/* Exe
ute iteration (j1, j2) */A[j1, j2]=A[j1 − 1, j2 − 2]+A[j1 − 3, j2 − 1];

}
}

}

66 Automati
 parallel
ode generation for tiled nested loops
3.2.3 Comparison { Experimental ResultsBoth our method (in the sequel denoted as RI - Redu
ed Inequalities) and the one des
ribedin [AI91℄ by An
ourt and Irigoin (denoted as AI), have been implemented as a software toolwhi
h automati
ally generates tiled C
ode using any tiling transformation P . In this se
tion,we
ompare AI and RI methods both in terms of
ompilation time and generated
ode eÆ
ien
y.We generated several random 2−D and 3−D problems and measured the following:
ompilationtime, row operations performed by Fourier-Motzkin elimination and run time of the generated
ode. In the sequel, we applied both AI and RI methods to three real appli
ations: SOR, Ja
obiand ADI integration. We also applied the inequalities of AI method to the Omega
al
ulator[KMP+95℄ and generated
ode for all problems. We then measured the
ompilation time andrun time obtained by Omega (the results are denoted as AI-Omega) and
ompared them withthe ones obtained by AI (using our tool) and RI. Table 3.1 shows the iteration spa
es used asexamples in 2−D and 3−D problems. We applied several tiling transformations, in whi
h thenon-zero elements of the tiling matri
es were randomly generated. In 2 −D spa
es we appliedthree di�erent tiling transformations (P1, P2, P3) varying from the diagonal matrix P1 to more
omplex ones. In 3 − D spa
es we applied seven di�erent tiling transformations (P4, . . . , P10),again here starting from the diagonal P4 and adding non-zero elements (P10
ontains no zeroelement). We performed our experiments on a PIII � 800MHz pro
essor with 128MB of RAM.The operating system is Linux with kernel 2.4.18. The generated tiled
ode was
ompiled usingg

 v.2.95.4 with the -O3 optimization
ag. We also experimented with lower optimizationlevels, where the exe
ution times were slower, but the relative results for all methods remainedthe same.Table 3.1: Example iteration spa
es

j1 j2 j3lower upper lower upper lower upperbound bound bound bound bound bound # of iterationsSpa
e1 −1999 4999 −1999 4999 - - 48986001Spa
e2 −1999 4999 −1999 4999 + 2i1 - - 69983001Spa
e3 −4999 4999 −4999 + 3i1 4999 + 2i1 - - 99980001Spa
e4 0 399 0 399 0 399 64000000Spa
e5 0 399 0 399 + i1 0 399 95920000Spa
e6 0 399 −i1 399 + i1 0 399 127840000Spa
e7 −99 149 −99 − i1 149 + i1 −99 149 + 2i2 22904099Spa
e8 0 399 −i1 399 + i1 i1 79 + 2i2 117635018Spa
e9 −99 149 −99 − i1 149 + i1 −99 − i1 149 + i1 + 2i2 31129399Spa
e10 0 59 −i1 59 + i1 −i1 − 3i2 59 + i1 + 2i2 1994462Row Operations - Compilation TimeTables 3.2-3.4 summarize the results (row operations and
ompilation time) from the
ompila-tions of all iteration spa
es tiled with all
andidate tiling matri
es. We present here the number

3.2 Generation of Serial Tiled Code 67
Table 3.2: Fourier-Motzkin row operations and
ompilation time for 2D algorithmsAI RI AI-Omega AI RI

Row Operations Compilation Time (ms)Spa
e1 30 10 16.29 0.26 0.26

P1 Spa
e2 30 10 19.53 0.27 0.26Spa
e3 34 10 20.82 0.29 0.26Spa
e1 37 10 22.56 0.28 0.27

P2 Spa
e2 33 10 21.56 0.28 0.27Spa
e3 34 10 22.78 0.29 0.26Spa
e1 56 12 33.36 0.36 0.30

P3 Spa
e2 55 12 39.40 0.37 0.30Spa
e3 53 12 40.12 0.36 0.30

Avg. Row Operations Avg. Compilation Time (ms)

P1 31 10 18.88 0.27 0.26

P2 35 10 22.30 0.28 0.27

P3 55 12 37.63 0.36 0.3of row operations and
ompilation times of ea
h matrix for ea
h iteration spa
e and the averagevalues of ea
h matrix for all iteration spa
es.Run TimeIn order to evaluate the run time overhead due to tiling, we exe
uted all tiled
odes of the previousproblems and measured their run time. We also exe
uted the original untiled serial
ode forea
h problem. We de�ne the tiling overhead fa
tor (TOF) as the fra
tion of the run time of thesequential tiled
ode to the run time of the untiled
ode: TOF = Run time of Sequential Tiled CodeRun time of Untiled Code .Note that, the loop body in ea
h
ase is a simple array assignment statement and, thus, the runtime measured is dominated by the time to
ompute the loop bounds. Sin
e the array size wassmall (20× 20) and the tile sizes were not
hosen to be optimal for
a
he lo
ality, the sequentialtiled
ode does not present any improvement due to the exploitation of the memory hierar
hy.Thus, TOF indi
ates the overhead imposed by the evaluation of the new loop bounds, due totiling. If TOF is too large, it will aggravate the speedup obtained when we parallelize nestedfor-loops using tiling. Tables 3.5-3.6 summarize the tiling overhead fa
tors. Again here wepresent the TOFs of all tiling matri
es applied to ea
h iteration spa
e and the average TOFsof all matri
es P a
ross all iteration spa
es. Figure 3.9 shows the TOF of 3 −D problems as afun
tion of the number of non-zero elements in tiling matrix P .Real Appli
ationsIn our last set of experiments, we applied AI and RI methods to tile three real appli
ations: SOR,Ja
obi, and ADI integration. For the �rst two problems, there is a skewed and an unskewedversion, and for ea
h version there are four (
ommuni
ation and s
heduling) optimal matri
es asdes
ribed in [HS02℄ and [Xue97a℄. Table 3.7 summarizes the row operations,
ompilation times

68 Automati
 parallel
ode generation for tiled nested loops
Table 3.3: Fourier-Motzkin row operations and
ompilation time for 3D algorithms.In some
ases the Fourier-Motzkin elimination method
ould not be
ompleted in a reasonabletime, or was interrupted due to la
k of memory or an over
ow ex
eption. In these
ases, we havedenoted a { in the respe
tive
ells of the table.

Row Operations Compilation Time (ms)AI RI AI-Omega AI RISpa
e4 70 22 27 0.41 0.43Spa
e5 70 22 30.7 0.42 0.43Spa
e6 74 22 33.39 0.44 0.43

P4 Spa
e7 80 22 42.5 0.49 0.44Spa
e8 117 22 84.14 0.62 0.44Spa
e9 87 20 55.8 0.53 0.43Spa
e10 116 22 89.54 0.63 0.44Spa
e4 82 22 36.3 0.45 0.44Spa
e5 86 22 45.58 0.48 0.43Spa
e6 96 22 51 0.53 0.43

P5 Spa
e7 95 22 51.52 0.55 0.44Spa
e8 150 22 158.12 0.79 0.45Spa
e9 110 20 55.56 0.62 0.43Spa
e10 118 22 70.35 0.65 0.45Spa
e4 132 28 106 0.64 0.48Spa
e5 159 34 167.63 0.77 0.51Spa
e6 220 42 371.34 1.1 0.54

P6 Spa
e7 199 38 213.76 1.03 0.54Spa
e8 470 42 397.13 3.91 0.54Spa
e9 316 38 284.81 1.91 0.54Spa
e10 360 42 382.33 2.32 0.55Spa
e4 264 28 235.55 1.33 0.49Spa
e5 578 34 367.78 6.0 0.52Spa
e6 508 42 1, 188.72 4.24 0.55

P7 Spa
e7 1411 38 911.38 40.78 0.54Spa
e8 1522 42 2, 099.32 51.31 0.56Spa
e9 379 38 370.47 2.61 0.55Spa
e10 419 42 527.3 3.08 0.56Spa
e4 4, 254 28 1, 558.04 460.04 0.51Spa
e5 14, 012 34 2, 891.19 7, 607.2 0.52Spa
e6 10, 049 38 4, 019.51 3, 022.46 0.54

P8 Spa
e7 1, 752 36 1, 846.78 73.16 0.54Spa
e8 6, 031 40 3, 201.75 1, 040.44 0.55Spa
e9 637 36 3, 889.58 7.27 0.54Spa
e10 936 40 { 15.95 0.55Spa
e4 6, 933 46 1, 984.67 1, 280.34 0.56Spa
e5 10, 569 42 2, 775.25 3, 234.86 0.56Spa
e6 5, 655 40 3, 662.66 855.78 0.55

P9 Spa
e7 751 40 5, 132.84 9.77 0.55Spa
e8 1, 907 36 1, 943.71 83.53 0.54Spa
e9 259 22 2, 308.23 1.37 0.51Spa
e10 295 22 2, 640.29 1.65 0.49Spa
e4 6, 477 46 1, 629.59 1, 034.07 0.58Spa
e5 27, 763 44 2, 612.24 45, 342.36 0.56Spa
e6 12, 533 40 2, 484.32 5, 351.28 0.55

P10 Spa
e7 95, 712 40 2, 428.64 638, 417.48 0.56Spa
e8 83, 025 40 1, 014.64 450, 599.44 0.56Spa
e9 71, 119 40 3, 215.22 328, 971.3 0.57Spa
e10 > 120, 309 40 4, 336.41 > 1, 025, 846.41 0.57

3.2 Generation of Serial Tiled Code 69
Table 3.4: Average row operations and
ompilation time for 3D algorithms

Avg. Row Operations Avg. Compilation Time (ms)AI RI AI-Omega AI RI
P4 88 22 51.87 0.51 0.43

P5 105 22 67.2 0.58 0.44

P6 265 38 276.14 1.67 0.53

P7 726 38 814.36 15.62 0.54

P8 5382 36 2, 901.14 1, 746.64 0.53

P9 3767 35 2, 921.1 781.04 0.53

P10 59563 41 2, 531.58 356, 508.91 0.56Table 3.5: Tiling overhead fa
tors (TOF) for 2 −D problems
TOF (2D) Avg. TOF (2D)AI-Omega AI RI AI-Omega AI RISpa
e1 2.59 0.96 1.24

P1 Spa
e2 2.73 1.01 1.27 2.85 1.03 1.31Spa
e3 3.22 1.13 1.43Spa
e1 6.27 4.55 1.61

P2 Spa
e2 6.12 4.62 1.63 6.62 4.78 1.69Spa
e3 7.45 5.16 1.82Spa
e1 8.00 6.10 3.58

P3 Spa
e2 7.75 6.21 3.63 8.23 6.41 3.75Spa
e3 8.95 6.92 4.04and TOFs for ea
h
ase. Figure 3.10 shows the TOFs obtained by ea
h method, in ea
h
ase.Overall Evaluation CommentsAs far as
ompilation time is
on
erned, RI method
learly outperforms AI method. This is dueto the fa
t that RI method feeds Fourier-Motzkin elimination with the system in (3.8), whi
h
onsists of 2n inequalities with n variables, while AI method feeds Fourier-Motzkin eliminationwith the system in (3.1), whi
h
onsists of 4n inequalities with 2n variables. Re
all that Fourier-Motzkin elimination is a doubly exponential algorithm and thus the redu
tion in its input size

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 3 4 5 6 7 8 9 10

T
O

F

of non-zero elements in P

Avg. TOF in 3D problems

using Omega calculator
using AI method
using RI method

Figure 3.9: Average tiling overhead fa
tors for 3 −D problems

70 Automati
 parallel
ode generation for tiled nested loops
Table 3.6: Tiling overhead fa
tors (TOF) for 3 −D problems.In
ase the
ompilation time
ould not be
al
ulated in Table 3.3, then, the run time
an not be
al
ulated, either. These
ases have been indi
ated by a { in the respe
tive
ells of this table.

TOF (3D) Avg. TOF (3D)AI-Omega AI RI AI-Omega AI RISpa
e4 1.33 1.21 1.18Spa
e5 1.36 1.23 1.17Spa
e6 1.39 1.23 1.17

P4 Spa
e7 2.19 1.21 1.11 1.99 1.26 1.17Spa
e8 2.45 1.16 1.19Spa
e9 2.44 1.28 1.10Spa
e10 2.75 1.48 1.30Spa
e4 5.39 3.57 1.97Spa
e5 5.57 3.59 1.98Spa
e6 5.72 3.63 1.91

P4 Spa
e7 4.33 3.20 1.77 4.96 3.44 1.88Spa
e8 4.57 3.20 1.85Spa
e9 4.51 3.33 1.77Spa
e10 4.61 3.53 1.90Spa
e4 10.90 7.55 4.05Spa
e5 10.77 7.52 4.38Spa
e6 11.17 7.65 4.51

P4 Spa
e7 8.33 6.67 4.13 9.55 7.16 4.62Spa
e8 8.44 6.68 4.01Spa
e9 8.52 6.89 4.61Spa
e10 8.75 7.18 6.67Spa
e4 15.50 9.86 4.65Spa
e5 16.09 10.05 5.14Spa
e6 16.20 10.10 5.29

P7 Spa
e7 12.67 9.04 4.80 13.90 9.47 5.17Spa
e8 12.72 8.92 4.65Spa
e9 11.80 8.95 4.84Spa
e10 12.29 9.38 6.84Spa
e4 12.94 9.81 3.51Spa
e5 12.40 9.88 3.61Spa
e6 12.27 9.92 3.68

P4 Spa
e7 9.87 8.39 3.29 11.24 9.14 3.60Spa
e8 10.08 8.36 3.16Spa
e9 9.87 8.60 3.48Spa
e10 { 8.98 4.46Spa
e4 12.68 9.63 6.10Spa
e5 12.52 9.61 6.05Spa
e6 12.68 9.75 6.09

P4 Spa
e7 9.21 7.96 5.05 10.74 8.78 5.51Spa
e8 9.75 7.89 4.39Spa
e9 9.51 8.15 4.57Spa
e10 8.86 8.46 6.33Spa
e4 16.07 11.70 5.17Spa
e5 16.55 11.75 5.04Spa
e6 16.24 11.57 5.09

P4 Spa
e7 12.30 10.48 5.11 13.62 11.07 5.62Spa
e8 11.20 10.14 3.83Spa
e9 11.26 10.77 5.67Spa
e10 11.72 { 9.44

3.2 Generation of Serial Tiled Code 71
Table 3.7: Performan
e for real appli
ations

Row Operations Compilation Time (ms) TOFAI RI AI-Omega AI RI AI-Omega AI RI
P1 99 22 53.03 0.50 0.42 1.47 1.20 1.05SOR P2 107 22 50.27 0.53 0.42 1.50 1.21 1.01
P3 118 22 49.01 0.57 0.42 1.75 1.63 1.05
P4 165 40 90.04 0.77 0.5 1.80 1.78 1.30

P1 99 22 42.09 0.53 0.41 1.59 1.29 1.06SOR P2 107 22 40.60 0.53 0.42 1.60 1.29 1.06skewed P3 118 22 57.9 0.57 0.42 1.90 1.73 1.12
P4 165 40 91.97 0.77 0.51 1.95 1.86 1.34

P1 645 28 346.99 5.3 0.46 2.08 1.91 1.57Ja
obi P2 645 28 347.96 5.26 0.47 2.09 1.92 1.60
P3 800 28 362.5 8.86 0.47 2.06 1.90 1.56
P4 3207 46 1, 353.55 194.88 0.53 5.58 5.09 2.10

P1 645 28 251.885 4.93 0.48 1.99 1.88 1.44Ja
obi P2 645 28 248.27 4.98 0.47 1.98 1.87 1.46skewed P3 800 28 229.34 8.19 0.48 2.02 1.89 1.45
P4 691 28 238.82 5.95 0.47 2.01 1.88 1.43ADI P1 180 28 47.42 0.85 0.46 1.46 1.47 1.07

 ��

Figure 3.10: Tiling overhead fa
tors for real appli
ationsimposed by our method
auses signi�
ant redu
tion in the method's exe
ution steps, as
learlyseen by the number of row operations. Note also that the exa
t simpli�
ation method of Fourier-Motzkin elimination was not applied in the presented experiments, sin
e the gain in run timeby the appli
ation of the method was inadequate to justify the vast in
rease in
ompilationtimes, espe
ially in the
ase of AI method (3% average and 10% maximum gain in run time). Inparti
ular, while RI
ompilation times remained in the order of millise
onds when using exa
tsimpli�
ation, AI
ompilation times in
reased dramati
ally (rea
hed the order of an hour). Thismeans that we
an pra
ti
ally apply exa
t simpli�
ation to RI, in order to further improve theeÆ
ien
y of the generated
ode.Despite the redu
tion in
ompilation time imposed by RI, it seems that both AI and AI-Omega perform well in almost all 2 −D and 3 −D problems (
ompilation times are less thanone se
ond). However, in problems of larger dimensions, both AI and AI-Omega present severalproblems. We exe
uted a number of randomly generated 4 −D algorithms and observed that,

72 Automati
 parallel
ode generation for tiled nested loops
at �rst, the
ompilation time of AI be
omes impra
ti
al (several hours or even days). Moreimportantly, AI failed to generate
ode for almost half of the problems due to la
k of memory.Note that Fourier-Motzkin elimination is also doubly exponential in spa
e, so in several 4 −Dproblems even 1GB of virtual memory was not suÆ
ient to
over the needs of the method. Onthe other hand, AI-Omega also fa
ed some problems with memory spa
e (to a smaller extentthan AI) but here again, in almost half of the problems, the system rose an over
ow ex
eption.Apparently, after a large number of row operations in 4−D algorithms, some
oeÆ
ients ex
eededthe system's MAXINT. In all
ases RI method su

eeded in generating
ode, within some se
ondsin the worst
ase.Note, also, that, sin
e we do not know all details about the implementation of Omega, we
annot be sure why the AI-Omega implementation gives higher implementation times than ourimplementation. However, as dedu
ed by tiling matri
es P8, P10, Omega is more stable and one
an more a

urately predi
t the time needed for the generation of serial tiled
ode.As far as run time is
on
erned, RI also exhibits a signi�
ant improvement in performan
e inall problems. In parti
ular, as shown in Figure 3.9, as the number of non-zero elements in matrix
P in
reases, the improvement of RI method be
omes mu
h more obvious. This means that RImethod performs very well in
omplex problems where the tiling matri
es
ontain many non-zero elements and the iteration spa
es are non-re
tangular. In addition, as shown in Figure 3.10,RI's performan
e is nearly optimal in simpler algorithms su
h as SOR, Ja
obi and ADI, sin
ethe TOF in these
ases is very
lose to one. Thus, RI performs very well in easy problems andsustains a remarkably good performan
e even when the tiling transformations and the shape ofthe iteration spa
es be
ome in
reasingly
omplex.The improvement in the quality of the generated
ode
aused by RI, is due to the fa
tthat, although the
ode to enumerate the tiles is essentially similar in AI and RI, the
ode totraverse the internal points of the tiles is
ompletely di�erent. Our tool makes a distin
tionbetween boundary and internal tiles and generates di�erent
ode to s
an the internal points forboth AI and RI (as in Examples 3.3, 3.4). In the
ase of boundary tiles, RI method resultsin fewer inequalities for the bounds of the tile spa
e. Consequently, fewer bound
al
ulationsare exe
uted during run time. In the
ase of internal tiles, whi
h are the vast majority in mostproblems, the
ode of RI
onsists of a loop with
onstant bounds 0 ≤ j′i ≤ vii−1 for i = 1, . . . , n(see formula (3.15)), while the
ode of AI in
ludes a loop whose bounds are derived from theappli
ation of Fourier-Motzkin elimination to the system (

gH

−gH

)
(~j − ~j0) ≤

(
(g − 1)~1

~0

)(see formula (3.11)). It is
lear that the
al
ulation of loop bounds in the �rst
ase is mu
hmore eÆ
ient. Finally, note that the enumeration of some redundant tiles does not imposeany signi�
ant overhead, sin
e the number of redundant tiles is negligible. The same holds forthe non-unimodular transformation used to a

ess the internal points of the tiles. In this
ase,the additional operations due to the transformation are simple integer multipli
ations, while

3.3 Parallelization 73
operations on extra variables are integer additions and assignment statements, whi
h are alleÆ
iently exe
uted by modern pro
essors and optimized by any ba
k-end
ompiler like g

.Note, also, that, the run time overhead imposed by Omega, in
omparison to our implemen-tation for AI inequalities, is due to the fa
t that Omega is a general purpose
ode generationtool, while our implementation is aimed at tiled nested loops. Thus, Omega
annot take intoa

ount the dis
rimination of internal and boundary tiles, as in Examples 3.3, 3.4. It uses thesystem of inequalities (3.1) for both enumerating the tiles and s
anning their interior. Althoughthe optimization des
ribed in this se
tion
ould not be in
orporated into Omega, the respe
tive
olumns have been used in Tables 3.2-3.7 as a measure of eÆ
ien
y of the
ode produ
ed by ourtool.Summarizing, the
ompilation time redu
tion is due to the method used to enumerate thetiles of the tile spa
e, while the run time redu
tion is mainly due to the transformation of anon-re
tangular tile to a re
tangular one.3.3 ParallelizationIn this se
tion, we refer to some parallelization aspe
ts of the sequential tiled
ode. Re
all fromFigure 3.1 that the parallelization of an arbitrarily tiled algorithm involves two separate tasks:�rst, the generation of the sequential tiled
ode and, se
ond, the parallelization of this
ode.
§3.2 fo
used on the �rst task. This se
tion will fo
us on the se
ond one. Parallelization
anbe separated in sub-tasks su
h as iteration distribution, data distribution and data transferring
ode generation. Tang and Xue in [TX00℄ addressed the same issues for re
tangularly tilediteration spa
es. In this se
tion, as in [GDAK02a℄, [Gou03℄, eÆ
ient data parallel
ode fornon-re
tangular tiles will be dis
ussed, without imposing any further
omplexity.When exe
uting an algorithm on a distributed memory ma
hine, the original data spa
e ofthe algorithm is distributed to the lo
al memories of the pro
essing nodes. The lo
al data spa
eof ea
h node is in general a non-re
tangular subset of the original data spa
e, even if re
tangulartiling is applied [AKN95℄. However, applying the transformations proposed in §3.2.2, ea
hpro
essor
an iterate over a re
tangular lo
al iteration spa
e (TTIS) and a

ess re
tangulardata spa
es as well. In this way, ea
h pro
essor
an allo
ate exa
tly the required amount ofmemory. Re
tangular data spa
es also allow for straightforward addressing s
hemes of arrayelements and thus a dire
t way of sweeping data by the generated
ode.Another very important bene�t in parallelization using re
tangular lo
al iteration spa
es(TTIS) is the
onvenient determination of the
ommuni
ation sets. Ea
h
ommuni
ation set
ontains the
ommuni
ation points, i.e. the points that are written in the lo
al memory ofa pro
essing node and are needed by another. The
ommuni
ation points have the followingproperty: if we add one dependen
e ve
tor to them, then the resulting point lies in a tile assignedto a di�erent node. Figure 3.11 shows the
ommuni
ation points and sets when determined in

74 Automati
 parallel
ode generation for tiled nested loops
Transformed Tile Iteration

Space (TTIS)

Tile Iteration Space
(TIS)

j1

j2

j'1

j'2

d1
d2 d'1

d'2

Communication sets

Communication point

Figure 3.11: Determining
ommuni
ation sets in the TIS and TTIS.In
ase the following tile along a dimension has been assigned to a di�erent pro
essing node,then the data
al
ulated by the iterations of the
orresponding grey area should be transferredto it.the TIS and in the TTIS. ~d1 and ~d2 are the dependen
es of the original algorithm, while ~d′1and ~d′2 are the transformed dependen
es in the TTIS. It is obvious that, when working withthe re
tangular TTIS, the
ommuni
ation sets are mu
h more easily determined sin
e they arere
tangular as well. Note that these sets, indi
ated by grey areas should be transferred at run-time only in
ase the following tile is assigned to a di�erent node, a

ording to the allo
ations
hemes that will be explored in detail in Chapters 4, 5.3.3.1 Some more algorithmi
 assumptionsIn addition to the restri
tion imposed by our algorithmi
 model in §2.2 and summarized inAppendix B, in this se
tion we also
onsider that the body of the perfe
tly nested loops is
onsisted of a statement of the form:
A[fw(~j)] := F (A[fw(~j − ~d1)], . . . , A[fw(~j − ~dq)]);where:1. ~j = (j1, . . . , jn) is the
urrent iteration2. ~di = (di1, . . . , din), i = 1, . . . , q are the uniform and
onstant dependen
es of this
odesegment and3. F , fw are fun
tions.In order to simplify the model, single assignment statements with one array variable have been
onsidered. Note, however, that this is only a notational restri
tion, sin
e all of the te
hniques

3.3 Parallelization 75
presented in this se
tion
an be adapted to multiple statements on multiple arrays. In additionto previously de�ned spa
es, in this se
tion we shall use the data spa
e, denoted DS, de�nedas:

DS = {fw(~j)|~j ∈ Jn}where fw is the write array referen
e.The underlying ar
hite
ture is
onsidered a (n− 1)-dimensional pro
essor mesh. Thus, ea
hpro
essor is identi�ed by a (n − 1)-dimensional ve
tor denoted ~pid. Note, however, that this isnot a physi
al restri
tion, but a
onvention for pro
essor labelling. More generally, a bi-levelparallel ar
hite
ture may be
onsidered as a (n−1)-dimensional mesh of SMP nodes (Symmetri
Multi-Pro
essors). Ea
h SMP node is identi�ed by a (n−1)-dimensional ve
tor denoted ~smp id.In addition, we
onsider that ea
h SMP node is
onsisted of a (n−1)-dimensional mesh of CPUs(pro
essors) with mx CPUs along the x-th dimension. Ea
h CPU is identi�ed by a (n − 1)-dimensional ve
tor denoted ~cpu id (0 ≤ cpu idx ≤ mx − 1). Apparently, there is an one-to-one
orresponden
e between the global labels of pro
essors and their labels inside a node. It holdsthat
pidx = cpu idx + smp idxmxInversely, it holds that

cpu idx = pidx%mx

smp idx = ⌊pidx/mx⌋The memory is physi
ally distributed among nodes. Pro
essors perform
omputations on lo
aldata. In order to use data
al
ulated by a di�erent pro
essor,1. if they reside in the same node, they should only syn
hronize with ea
h other in order tomake sure that the data neede have already been written to shared memory before used,or2. if they reside in di�erent nodes, they should
ommuni
ate with ea
h other via messagepassing or remote DMA, in order to ex
hange data that reside to remote memories.The general intuition in the presented approa
h is that, sin
e the iteration spa
e is trans-formed by H and H ′ into a spa
e of re
tangular tiles, ea
h pro
essor
an work on its lo
al shareof re
tangular tiles and, following a proper memory allo
ation s
heme, perform operations onre
tangular data spa
es as well. After all
omputations have been
ompleted, lo
ally
omputeddata
an be written ba
k to the appropriate lo
ations of the global data spa
e. In this way, ea
hpro
essor essentially works on iteration and data spa
es that are both re
tangular, and properlytranslates from its lo
al data spa
e to the global one.

76 Automati
 parallel
ode generation for tiled nested loops
3.3.2 Computation DistributionComputation distribution determines whi
h
omputations of the sequential tiled
ode will beassigned to whi
h pro
essor. The n innermost loops of the sequential tiled
ode that a

essthe internal points of a tile will not be parallelized, and thus parallelization only involves thedistribution of tiles (traversed by the outermost n-dimensional loop) to pro
essors. Hodzi
and Shang in [HS98℄ mapped all tiles along a spe
i�
 dimension to the same pro
essor andused hyperplane Π = [1, . . . , 1] as time s
heduling ve
tor. In addition to this, previous work[AKPT99℄ in the �eld of UET-UCT task graphs has shown that if we map all tiles along thedimension with the maximum length (i.e. maximum number of tiles) to the same pro
essor,then the overall s
heduling is optimal, as long as the
omputation to
ommuni
ation ratio isone. This
on
lusion will also be veri�ed in §4.4.4 for a bi-level parallel ar
hite
ture. However,all resear
h works resulting to this
on
lusion have assumed the existen
e of an in�nite numberof pro
essors. We will keep on this assumption in this se
tion also. In Chapter 5 we shall proposesome allo
ation s
hemes in
ase there are fewer pro
essors available than needed.Let us denote the i-th dimension as the one with the maximum total length. A

ording to theabove, all tiles indexed by ~jS = (jS

1 , . . . , j
S
i , . . . , j

S
n), where jS

k = const, k = 1, . . . , i−1, i+1, . . . , nand lSi ≤ jS
i ≤ uS

i are exe
uted by the same pro
essor. The n−1
oordinates of a tile (ex
luding
jS
i) will identify the pro
essor that a tile is going to be mapped to (~pid). All tiles along jS

iare sequentially exe
uted by the same pro
essor, one after the other, in an order spe
i�ed bya linear time s
hedule. This means that, after the sele
tion of index jS
i with the maximumtrip
ount, we reorder all indi
es so that jS

i be
omes the innermost index. This
orresponds toloop index inter
hange or permutation. Sin
e all dependen
e ve
tors ~dS in JS are
onsideredlexi
ographi
ally positive, the inter
hanging or reordering of indi
es is valid (see also [PW86℄).The boundaries of the reordered loop indi
es, in
ase of a non-re
tangular tile spa
e,
an be
al
ulated by an appli
ation of the Fourier-Motzkin elimination method [BW95℄.3.3.3 Data DistributionIn a NUMA ar
hite
ture, the data spa
e of the original algorithm is distributed to the lo
almemories of the various nodes forming the global data spa
e. Data distribution de
isions a�e
tthe
ommuni
ation volume, sin
e data that reside in one node may be needed for the
omputationin another. In our approa
h we follow the
omputer-owns rule, whi
h di
tates that a pro
essorowns the data it writes. It means that data
omputed by a pro
essor are dire
tly written tothe lo
al memory of the respe
tive node. Communi
ation o

urs when a pro
essor residing inanother node needs to read data
omputed in the former one. Substantially, the memory spa
eallo
ated by a node represents the spa
e where
omputed data are to be stored. This meansthat the pro
essors of ea
h node iterate over a number of transformed re
tangular tiles (TTIS)and
an lo
ally store their
omputed data to a re
tangular data spa
e. At the end of all their

3.3 Parallelization 77

omputations, the lo
ally
omputed data
an be pla
ed to the appropriate positions of the globaldata spa
e (DS). Thus,
on
erning the data writes, we
an distinguish the following phases:1. Data (initial and boundary values) are distributed to the lo
al memories of the nodes,a

ording to the
omputer-owns rule.2. Data are lo
ally
omputed by the pro
essors of ea
h node. Communi
ation is interleavedbetween the exe
ution of two tiles in order to re
eive data from neighboring nodes neededduring the exe
ution of subsequent tiles. The data re
eived are lo
ally stored.3. At the end of all
omputations, lo
ally
omputed data are written to the global data spa
e(DS).A simpli�ed version of this pro
edure,
on
erning single CPU nodes, is extensively des
ribed in[GDAK02a℄, [Gou03℄.The data spa
e
omputed by a tile
ould be an exa
t image of the TTIS, but in this
asethe holes of the TTIS would
orrespond to unused extra spa
e. In addition to the spa
e storingthe
omputed data, ea
h node needs to allo
ate extra spa
e for
ommuni
ation, that is memoryspa
e to store the data it re
eives from its neighbors. This means that we need to1.
ondense the a
tual points of the TTIS and2. provide further spa
e for re
eiving data.Sin
e, after all transformations, we �nally work with re
tangular sets, this lo
al data spa
e(denoted LDS) allo
ated by a node, is given by the following de�nition.

LDS

Computation Storage
Communication Storage
Unused Space

j'1

j'2

map-1

map

TTIS

. . .

j''1off1 t=0 t=1 t=2
mapping dimension

off2

cpu_id=0

j''2

cpu_id=1

cpu_id=2

cpu_id=3

Data that should be transferred
to the neighboring node

Figure 3.12: Lo
al data spa
e LDS and transformed tile iteration spa
e TTIS

78 Automati
 parallel
ode generation for tiled nested loops
De�nition 3.1 The lo
al data spa
e (LDS) is de�ned as:

LDS =




~j′′ ∈ Zn|

0 ≤ j′′k < offk +mkvkk/h̃′kk, k = 1, . . . , n, k 6= i

∧0 ≤ j′′i < offi + |t|vii/h̃′ii



where |t| denotes the maximum number of tiles assigned to a pro
essor of the parti
ular node.As shown in Figure 3.12, the LDS of a pro
essor
onsists of the memory spa
e required forpa
king
omputed data (bla
k dots) and for unpa
king re
eived data (grey dots) of a tile, multi-plied by the number of tiles assigned to the parti
ular pro
essor. White dots depi
t unused data.The o�set offk, whi
h expands the spa
e to store re
eived data, derives from the
ommuni
ation
riteria of the algorithm, as shown in §3.3.4. Re
all that ea
h pro
essor iterates over the TTISfor as many times as the number of tiles assigned to that pro
essor. Lemma 3.5 determines thetranslation fun
tion from TTIS to LDS, while Lemma 3.6 determines the inverse translationfun
tion from LDS to TTIS.Lemma 3.5 If ~j′ ∈ TTIS, then its
orresponding point in LDS is given by the followingexpressions:

j′′k = ⌊(cpu idkvkk + j′k)/h̃
′
kk⌋ + offk, k 6= i

j′′i = ⌊(tvii + j′i)/h̃
′
ii⌋ + offiwhere t is the
urrent tile. We
all this transformation fun
tion as map(): ~j′′ = map(~j′, t).Proof: In order to prove the validity of this transformation, we need to prove that theresulting point ~j′′ ∈ LDS.1. For ea
h k 6= i it holds that 0 ≤ j′k < vkk ⇒ 0 ≤ ⌊

j′
keh′

kk

⌋ < vkkeh′

kk

⇒ cpu idkvkkeh′

kk

+

offk ≤ cpu idkvkkeh′

kk

+ ⌊
j′
keh′

kk

⌋+ offk <
(cpu idk+1)vkkeh′

kk

+ offk. Taking into a

ount that
0 ≤ cpu idk ≤ mk − 1, the previous inequality gives offk ≤ cpu idkvkkeh′

kk

+ offk ≤ j′′k <

(cpu idk+1)vkkeh′

kk

+ offk ≤ mkvkkeh′

kk

+ offk.2. In addition, 0 ≤ j′i < vii ⇒ 0 ≤ ⌊
j′ieh′

ii

⌋ < viieh′

ii

⇒ tviieh′

ii

+ offi ≤
tviieh′

ii

+ ⌊
j′ieh′

ii

⌋ + offi <

(t+1)viieh′

ii

+ offi. Taking into a

ount that 0 ≤ t ≤ |t| − 1, the previous inequality gives
offi ≤

tviieh′

ii

+ offi ≤ j′′i <
(t+1)viieh′

ii

+ offi ≤
|t|viieh′

ii

+ offi.Therefore, it holds that ~j′′ = map(~j′, t) ∈ LDS. In addition, the proof of item (1) gives thatthe
orresponding parts of LDS for ea
h CPU of a node have no
ommon elements, but theyare neighboring i� CPUs are neighboring. The proof of item (2) gives that the
orrespondingparts of LDS for ea
h tile of a pro
essor have no
ommon elements, but they are neighboringi� tiles are neighboring. ⊣

3.3 Parallelization 79
Lemma 3.6 If ~j′′ ∈ LDS, then its
orresponding point in TTIS is given by the followingexpression:

~j′ = H̃ ′~xwhere ~x is given by:
xk = j′′k − offk − cpu idkvkk/h̃′kk − ⌊(

k−1∑

l=1

xlh̃′kl)/h̃′kk⌋, k 6= i

xi = j′′i − offi − tvii/h̃′ii − ⌊(
i−1∑

l=1

xlh̃′il)/h̃′ii⌋where t = ⌊(j′′i − offi)h̃′ii/vii⌋ is the
urrent tile. We
all this transformation fun
tion as
map−1(): (~j′, t) = map−1(~j′′).Proof: We need to prove that map and map−1 are indeed inverse fun
tions. Equivalently,we should prove that1. (~j′, t) = map−1(map(~j′, t)) and2. ~j′′ = map(map−1(~j′′)).1. (~j′, t)

?
= map−1(map(~j′, t)) ⇔





t
?
= ⌊

((⌊
tvii+j′i

h′

ii

⌋+offi)−offi)eh′

ii

vii
⌋ (a)

∧

j′l
?
=

l∑
k=1

h̃′lkyk (b)

,
where:  yk = ((⌊

cpu idkvkk+j′
keh′

kk

⌋ + offk) − offk − cpu idkvkkeh′
kk

) − ⌊

k−1P
l=1

eh′

kl
yleh′

kk

⌋, k 6= i

yi = ((⌊
tvii+j′ieh′

ii

⌋ + offi) − offi −
tviieh′

ii

) − ⌊

i−1P
l=1

eh′

il
yleh′

ii

⌋





⇔ yk = ⌊
j′
keh′

kk

⌋ − ⌊

k−1P
l=1

eh′

kl
yleh′

kk

⌋ ∀k(a) However, t ?
= ⌊

((⌊
tvii+j′i

h′

ii

⌋+offi)−offi)eh′

ii

vii
⌋ ⇔ t

?
= t + ⌊

⌊
j′i

h′

ii

⌋eh′

ii

vii
⌋. From 0 ≤ j′i <

vii ⇒ 0 ≤ ⌊
j′ieh′

ii

⌋ < viieh′

ii

⇒ 0 ≤ ⌊
j′ieh′

ii

⌋h̃′ii < vii ⇒ 0 ≤ ⌊
⌊

j′i

h′

ii

⌋eh′

ii

vii
⌋ < 1 ⇒

⌊
⌊

j′i

h′

ii

⌋eh′

ii

vii
⌋ = 0. Thus, t ?

= t+ ⌊
⌊

j′i

h′

ii

⌋eh′

ii

vii
⌋ ⇔ t

?
= t+ 0, whi
h is always valid.(b) In addition, from yk = ⌊

j′
keh′

kk

⌋ − ⌊

k−1P
l=1

eh′

kl
yleh′

kk

⌋ ⇒ ⌊
j′
keh′

kk

⌋ = yk + ⌊

k−1P
l=1

eh′

kl
yleh′

kk

⌋ =

⌊

kP
l=1

eh′

kl
yleh′

kk

⌋ ⇒ h̃′kk⌊

kP
l=1

eh′

kl
yleh′

kk

⌋ ≤ j′k ≤ h̃′kk⌊

kP
l=1

eh′

kl
yleh′

kk

⌋ + h̃′kk − 1. In this interval,

80 Automati
 parallel
ode generation for tiled nested loops
there is exa
tly one a
tual point j′k (as h̃′kk is the step of j′k in order to meet anothera
tual point), whi
h is k∑

l=1

h̃′klyl. Therefore, it holds that j′k =
k∑

l=1

h̃′klyl.2.
~j′′

?
= map(map−1(~j′′)) ⇔





j′′k
?
= ⌊

cpu idkvkk+
kP

l=1

eh′

kl
zleh′

kk

⌋ + offk, k 6= i

∧

j′′i
?
= ⌊

tvii+
iP

l=1

eh′

il
zleh′

ii

⌋ + offi





(3.18)
where:  zl = j′′l − offl −

cpu idlvlleh′
ll

− ⌊

l−1P
k=1

eh′

lk
zkeh′

ll

⌋, l 6= i

zi = j′′i − offi −
tviieh′

ii

− ⌊

i−1P
k=1

eh′

ik
zkeh′

ii

⌋





⇒





j′′l = offl + cpu idlvlleh′
ll

+ ⌊

lP
k=1

eh′

lk
zkeh′

ll

⌋, l 6= i

j′′i = offi + tviieh′

ii

+ ⌊

iP
k=1

eh′

ik
zkeh′

ii

⌋

(3.19)Therefore, (3.18) (3.19)
⇐⇒





offk + cpu idkvkkeh′
kk

+ ⌊

kP
l=1

eh′

kl
zleh′

kk

⌋
?
= ⌊

cpu idkvkk+
kP

l=1

eh′

kl
zleh′

kk

⌋ + offk, k 6= i

∧

offi + tviieh′

ii

+ ⌊

iP
k=1

eh′

ik
zkeh′

ii

⌋
?
= ⌊

tvii+
iP

l=1

eh′

il
zleh′

ii

⌋ + offiwhi
h is apparently always valid, taking into a

ount that vkk is always a multiple of
h̃′kk, ∀k = 1, . . . , n.After proving both
laims (1) and (2), it turns out that this lemma is always valid. ⊣Fun
tionmap(~j′, t) determines, a

ording to Lemma 3.5, the memory lo
ation in LDS where
omputation for iteration ~j′ ∈ TTIS is to be stored (Figure 3.12). Fun
tion loc(~j) in Table 3.8uses map(~j′, t) in order to lo
ate the pro
essor ~pid and the memory lo
ation ~j′′ ∈ LDS, wherethe
omputed data of iteration point ~j ∈ Jn is to be stored. Inversely, Table 3.9 shows the seriesof steps in order to lo
ate the
orresponding~j ∈ Jn for a point ~j′′ ∈ LDS of pro
essor ~pid. Thus,

loc−1() is
alled by a pro
essor of ea
h node at the end of the node's
omputations in order totransit from their LDS to the original iteration spa
e Jn. In the sequel, the
orresponding pointin the data spa
e DS is found via fw (Figure 3.13).

3.3 Parallelization 81
)(ypidLDS

)(xpidLDS

loc()

loc–1()

fw()

loc()
loc–1()

j2

j1
w1

w2

j2''

j2''
j1''

j1''Figure 3.13: Relations between DS, Jn and LDSTable 3.8: Using fun
tion loc() to lo
ate ~j ∈ Jn in the LDS of a pro
essor
~j′′ = map(~j′, t):

j′′k = ⌊(cpu idkvkk + j′k)/h̃
′
kk⌋ + offk, k 6= i

j′′i = ⌊(tvii + j′i)/h̃
′
ii⌋ + offi

(~j′′, ~pid) = loc(~j):
~jS = ⌊H~j⌋

~j′ = H ′(~j − P ~jS)
~j′′ = map(~j′, jS

i −min{lSi })
~pid = (jS

1 , . . . , j
S
i−1, j

S
i+1, . . . , j

S
n)Under this s
heme, ea
h node allo
ates exa
tly the amount of lo
al memory needed for
omputation and
ommuni
ation (minor over-allo
ation o

urs in the few boundary tiles). Notethat dire
t allo
ation of a node's share in the original DS would lead to a waste of memoryspa
e, sin
e this generally non-re
tangular share would lead to the allo
ation of the minimumen
losing re
tangular memory spa
e. Note, also, that ea
h node's share in the original DS(the footprint of a tile be
ause of fw) is in general non-re
tangular, even if a re
tangular tilingtransformation is applied. This method, however, for
es the lo
al data spa
e of ea
h node to bere
tangular, allowing thus more eÆ
ient memory management. In addition, if we also take intoa

ount that data spa
es for
ommon
omputationally intensive algorithms are very large, andwill probably not �t in ea
h node's memory, the
ompression of the lo
al spa
e to the LDS is inmost
ases ne
essary. Eventually, this leads to a trade-o� between
omputational
omplexity andallo
ated memory spa
e, sin
e extra expressions are needed to address the LDS, but this minoroverhead does not signi�
antly a�e
t performan
e, as indi
ated by the experimental veri�
ationof [GDAK02a℄. Finally, note that storing data a

essed by a non-re
tangular tile to a densere
tangular data spa
e also exploits
a
he lo
ality.

82 Automati
 parallel
ode generation for tiled nested loops
Table 3.9: Using fun
tion loc−1() to lo
ate ~j′′ ∈ LDS of pro
essor ~pid in Jn

(~j′, t) = map−1(~j′′):
t = ⌊(j′′i − offi)h̃′ii/vii⌋

xk = j′′k − offk − cpu idkvkk/h̃′kk − ⌊(
k−1∑
l=1

xlh̃′kl)/h̃′kk⌋, k 6= i

xi = j′′i − offi − tvii/h̃′ii − ⌊(
i−1∑
l=1

xlh̃′il)/h̃′ii⌋

~j′ = H̃ ′~x

~j = loc−1(~j′′, ~pid):
~j′ = map−1(~j′′)

~jS = (pid1, . . . , pidi−1, t+min{lSi }, pidi+1, . . . , pidn)
~j = P ′(V ~jS + ~j′)3.3.4 Communi
ation setsUsing the iteration and data distribution s
hemes des
ribed before, data that reside in the lo
almemory of one node may be needed by another due to algorithmi
 dependen
es. In this
ase,the nodes need to
ommuni
ate via message passing or remote DMA. The two fundamentalissues that need to be addressed regarding
ommuni
ation are1. the spe
i�
ation of the pro
essors ea
h pro
essor needs to
ommuni
ate with, and2. the determination of the data that need to be transferred.As far as the �rst issue is
on
erned, ea
h pro
essor needs to ex
hange data with its neighborsonly in
ase they reside in a di�erent node. That is, pro
essors with cpu idx = 0 ⇔ pidx%mx = 0need to re
eive data from pro
essors with pid′x = pidx − 1. Similarly, pro
essors with cpu idx =

mx − 1 ⇔ pidx%mx = mx − 1 should send data to neighboring pro
essors with pid′x = pidx + 1(see Figure 3.14). When neighboring pro
essors reside in the same node, they should onlysyn
hronize with ea
h other, in order to make sure that data have been written to the sharedmemory of the node before used.As far as the
ommuni
ation data are
on
erned, we fo
us on the
ommuni
ation points, asde�ned below:De�nition 3.2 Let i be the mapping dimension. Let ~dS ∈ DS be a tile dependen
e that impliespro
essor dependen
e, that is ∃l 6= i : dS
l 6= 0. A point ~j′ ∈ TTIS is
onsidered a
ommuni
ationpoint respe
tive to ~dS i� the
omputed data at iteration ~j = P ′(V ~jS +~j′) is needed by tile ~jS + ~dS,where ~jS ∈ JS and ~jS + ~dS ∈ JS, and ~jS + ~dS has been allo
ated to a di�erent node than ~jS.Note that a
ommuni
ation point is only de�ned in respe
t to a spe
i�
 tile dependen
e ~dS .In other words,
ommuni
ation points in the TTIS
orrespond to iterations at whi
h data are
omputed by one node and need to be sent to another node in tile dire
tion ~dS .

3.3 Parallelization 83

SMP node (0, 0) SMP node (0, 1)

SMP node (1, 0) SMP node (1, 1)

CPU (0, 0)CPU (0, 2)

CPU (2, 2)

Figure 3.14: Communi
ation among pro
essors.Only pro
essors with neighbors in a di�erent node need to transfer data among them. Neighboringpro
essors within the same node should only syn
hronize with ea
h other, in order to make surethat data have been written to the shared memory of the node before used.We further exploit the regularity of the TTIS and LDS to dedu
e simple
riteria for the
ommuni
ation points at
ompile time. The following lemma is useful:Lemma 3.7 A point ~j′ = (j′1, . . . , j
′
n) ∈ TTIS
orresponds to a
ommuni
ation point respe
tiveto a tile dependen
e ~dS = (dS

1 , . . . , d
S
n) ∈ DS i� it holds:
j′k ≥ dS

k (vkk − max
~d′∈D′

{d′k})where k = 1, . . . , n, ~d′ ∈ D′, D′ = H ′D, and tile ~jS + ~dS has been allo
ated to a di�erent nodethan ~jS.Proof: For ~j′ to be a
ommuni
ation point a

ording to the k-th dimension, we distinguishtwo
ases:1. dS
k = 0. Sin
e no tile dependen
e is enfor
ed in this
ase, no limitation for j′k is de�ned.So it holds 0 ≤ j′k ≤ vkk − 1.2. dS
k = 1. In this
ase, there must exist a data dependen
e in the TTIS ~d′ ∈ D′ su
h, thatthe k-th
omponent of ~j′ + ~d′ ex
eeds the respe
tive bound of the TTIS, thus in
urringneed for
ommuni
ation a

ording to the k-th dimension. A

ording to the above, itmust hold

j′k + d′k > vkk − 1 ⇒ j′k + d′k ≥ vkk ⇒ j′k ≥ vkk − d′k

84 Automati
 parallel
ode generation for tiled nested loops
for some ~d′ ∈ D′ or equivalently

j′k ≥ vkk − max
~d′∈D′

{d′k}The uni�
ation of both
ases leads to the given
ondition. ⊣Thus, it is advantageous to identify the
ommuni
ation data in the TTIS, as opposed to theother possible alternatives (e.g. the initial iteration spa
e, the TIS et
.) whi
h would
ompli
atethe
ommuni
ation pro
edure. Also, note that the o�sets in LDS referen
ed in §3.3.3
an easilyarise as follows:
offk = ⌈max

~d′∈D′

{d′k}/h̃
′
kk⌉, ∀k = 1, . . . , n (3.20)The instan
es of LDS
orresponding to the
ommuni
ation points, as de�ned by Lemma 3.7,
an be
al
ulated by the expression:

j′′k ≥ mkvkk/h̃′kk (3.21)for ea
h tile dependen
e ~dS with dS
k 6= 0.Example 3.5: Continuing Example 3.4, we
onsider that the tiled nested loops will beexe
uted by a
luster of SMP nodes with 4 pro
essors ea
h. A

ording to Figure 3.2, themaximum total length
orresponds to dimension jS

1 . Thus, a

ording to §3.3.2, jS
1 should besele
ted as the mapping dimension of this example.Sin
e D′ = H ′D =

[
2 −1

−1 3

][
3 1

1 2

]
=

[
5 0

0 5

], the o�set parameters of LDS aregiven by formula (3.20) as follows:
off1 = ⌈max

~d′∈D′

{d′1}/h̃
′
11⌉ = ⌈5/1⌉ = 5

off2 = ⌈max
~d′∈D′

{d′2}/h̃
′
22⌉ = ⌈5/5⌉ = 1A

ording to De�nition 3.1, as depi
ted in Figure 3.12, the lo
al data spa
e LDS is de�ned asfollows:

LDS = {~j′′ ∈ Zn|0 ≤ j′′1 < 5 + |t|10/1 = 5 + 10|t| ∧ 0 ≤ j′′2 < 1 + 4 · 20/5 = 17}where |t| denotes the maximum number of tiles assigned to a pro
essor of the parti
ular node.A

ording to formula (3.21), as indi
ated in Figure 3.12, the data that are
omputed in this

3.3 Parallelization 85
node and should be transferred to a neighboring one, reside in the positions of LDS with
j′′2 ≥ m2v22/h̃′22 = 4 · 20/5 = 16.

86 Automati
 parallel
ode generation for tiled nested loops

4Exe
ution of tiles onto
lusters ofSymmetri
 Multipro
essors (SMPnodes)
In this
hapter, the exe
ution poli
ies of non-overlapping and overlapping
ommu-ni
ation with
omputation, are generalized, in order to be applied onto PC
lusterswith more than one CPUs ea
h. In order to a
hieve this generalization, we introdu
ethe te
hnique of grouping, whi
h is a tiling transformation applied onto tiles. Af-terwards, we produ
e a linear time s
heduling of groups, whi
h seems to be optimal,while any linear s
heduling of tiles would be suboptimal, sin
e the
ommuni
ation re-quirements among tiles are di�erent. We also indi
ate how
omputation tasks shouldbe allo
ated to the pro
essors and we determine the guidelines for the sele
tion ofthe grouping parameters. Finally, we theoreti
ally and experimentally validate thete
hniques proposed.

88 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)4.1 An Intuitive Approa
hBefore starting with the full demonstration of the proposed te
hniques, we will intuitively illus-trate the basi

on
epts of our method, using an example. Let us
onsider the following s
enario:A 2-dimensional nested loop is to be exe
uted onto a
luster of 3 identi
al single CPU nodes.We tile the iteration spa
e of the
ode segment and assign ea
h row of tiles to a CPU node. Inorder to a
hieve an easy allo
ation of tiles to CPUs, the size and shape of tiles should be sele
tedso that the iteration spa
e is partitioned into 3 rows of tiles (sin
e 3 CPUs are available). Then,the tiles
an be
omputed using either the overlapping, or the non-overlapping s
heme presentedin §2.7.
Sj1

Sj2

node 0

node 1

node 2

Figure 4.1: Exe
ution of tiles on single-CPU nodes.If the
luster
onsists of 3 single-CPU nodes, the initial iteration spa
e is partitioned into 3 rowsof tiles.In the sequen
e, ea
h single CPU node is repla
ed by an SMP node, with 2 CPUs. The�rst solution one may think of, is tiling the initial iteration spa
e from s
rat
h, sele
ting thetile size so as to get six rows of tiles. Then, a row of tiles may be assigned to ea
h CPU andexe
uted as if there were six single CPU nodes. This would mean that even CPUs inside thesame SMP node should
ommuni
ate with ea
h other via message passing, in order to ex
hangethe data needed. The result of su
h a
onsideration may be unne
essary transfers from thepro
essing unit to the network
ard and vi
e versa, whi
h will
onsume a portion of the intra-node
ommuni
ation bandwidth. In the best
ase, when the
ompiler
an dete
t and preventsu
h unne
essary
ommuni
ation between the pro
essor and the network
ard, it will not evi
tunne
essary transfers among the shared and private spa
e of threads inside the same SMP node[DK04℄. In fa
t, they
an simply write and read the data needed dire
tly to and from sharedmemory. Then, they should only syn
hronize with ea
h other using a barrier or a semaphore.The above
onsideration leads to the
on
lusion that iterations assigned to the same SMPnode should be more tightly
onne
ted to ea
h other, than simply being mapped to neighboringtiles. Maybe they
an belong to the same tile, or to an entity inheriting some properties oftiling.In order to adjust the tile spa
e of Figure 4.1 to this
omputing ar
hite
ture, we
an splitea
h tile into two subtiles and assign ea
h subtile to one of the CPUs of the
orresponding SMPnode, as indi
ated in Figure 4.2. Then, one may s
hedule tiles as if they were unsplit and take

4.1 An Intuitive Approa
h 89

are so as to exe
ute subtiles of a tile at the same time.

Sj1

Sj 2

node 0

node 1

node 2

Figure 4.2: Exe
ution of tiles on SMP nodes with 2 CPUs ea
h.Ea
h tile of Figure 4.1 is divided into 2 subtiles and ea
h CPU undertakes a subtile during ea
htime step.Equivalently, the initial iteration spa
e may be tiled from s
rat
h, sele
ting the size of tilesso as to form six rows of tiles. Then, one row of tiles is assigned to ea
h CPU of the SMPnodes neighboring tiles, assigned to the same SMP node, are grouped together, as in Figure 4.3.Be
ause of tile dependen
es, the tiles grouped together by this s
heme
annot be simultaneouslyexe
uted, unless they are split into subtiles. Thus, additional syn
hronization overhead is ne
-essary due to dependen
es among subtiles, whi
h have been assigned to di�erent CPUs of thesame node, but should be exe
uted during the same time step.
Sj1

Sj2

node 0

node 1

node 2

CPU0
CPU1

CPU0

CPU1

CPU0

CPU1

Figure 4.3: Verti
al grouping.Neighboring tiles should be exe
uted at the same time by CPUs of the same node. There aredependen
es among tiles exe
uted during the same time step.A more eÆ
ient s
heme
an be obtained if the tiles assigned to the same SMP nodes aregrouped as indi
ated in Figure 4.4. Then, both tiles belonging to the same group
an besimultaneously exe
uted by the CPUs of an SMP node, without a need for
ommuni
ation orsyn
hronization. Only one syn
hronization per tile is required, in order to
ertify that the dataneeded are lo
ated in the shared memory. This syn
hronization (implemented by a barrier or asemaphore)
an be
ontemporary with the
ommuni
ation with CPUs of di�erent SMP nodes.In the rest of this thesis, we shall
all this grouping s
heme as hyperplane grouping.On the
ontrary, any other grouping s
heme along a spe
i�
 dimension, su
h as the one pre-

90 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)

Sj1

Sj2

node 0

node 1

node 2

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

Figure 4.4: Hyperplane grouping.There are no dependen
es among tiles exe
uted during the same time step.sented in Figure 4.3, will be
alled verti
al grouping. Verti
al grouping imposes additionalsyn
hronization overhead, due to dependen
es among tiles of the same group.4.2 Grouping TransformationAs shown in §4.1, eÆ
ient s
heduling of tiled iteration spa
es onto a parallel ar
hite
ture
on-sisting of SMP nodes, is not a straightforward task. In order to generate an appropriate times
hedule, we need to group together the tiles of JS that
an be
on
urrently exe
uted by theCPUs of the same SMP node. It
an be a
hieved by applying an additional supernode, or tilingtransformation to the tile spa
e JS . We name this supernode transformation as groupingtransformation.Thus, from the tile spa
e JS we produ
e the group spa
e
JG = { ~jG| ~jG = ⌊HG ~jS⌋, ~jS ∈ JS} (4.1)in
orresponden
e to formula (2.4) for tiling. This grouping transformation is de�ned by the

n × n non-singular matrix HG (similarly to matrix H de�ning tiling transformation). In
or-responden
e to the tiling matrix H, the n × n matrix HG is
alled grouping matrix. Ea
hrow-ve
tor of HG is perpendi
ular to one of the families of hyperplanes that de�ne the bound-aries of the groups in JS . The n×n matrix PG = (HG)−1 is
alled inverse grouping matrix.The matrix PG should
onsist only of integer elements and its
olumn-ve
tors are parallel andequal in size to the edges of a group-hyperparallelepiped in JS .In order to be valid, a grouping transformation should preserve the
onstraint of atomi
ityof groups (HGDS ≥ 0 in
orresponden
e to HD ≥ 0 for tiling). In addition, sin
e within agroup all tiles are
on
urrently exe
uted by the CPUs of an SMP node, in order to preservedata
onsisten
y, there should be no dire
t or indire
t dependen
e among them. Equivalently,

4.3 Intuition of our algorithm 91
for ea
h dependen
e ve
tor ~dS

i in the tile spa
e, ve
tor HG ~dS
i should have at least one elementgreater than or equal to 1.4.3 Intuition of our algorithmThus, just as tiling transformation is used to summon iteration points into tiles, grouping trans-formation is applied after tiling transformation, in order to form suitable groups of tiles. Adesirable tiling transformation is the one that minimizes
ommuni
ation overhead [Xue97a℄,[AKN95℄, [RR02℄, [RS92℄, [BDRR94℄, or total exe
ution time [HCF97℄, [HCF99℄, [DDRR97℄[XC02℄. Respe
tively, in the following paragraphs, we shall de�ne the
riteria for an eÆ
ientgrouping transformation and we shall propose a theory for determining it.Let us
onsider a 3-dimensional tile spa
e JS . We want to assign all tiles along dimension

jS
1 to the same CPU of an SMP node. Sin
e all CPUs within a node have a

ess to the sharedmemory, neighboring rows of tiles, whi
h ex
hange data, are assigned to the CPUs of the samenode. In this way, the part of the tile spa
e assigned to a node will be of a re
tangular shape,as depi
ted in Figure 4.5.

Sj 2

Sj1

Sj3

� 	 � � �

� 	 � � �

Figure 4.5: Set of tiles assigned to an SMP node.All dots along a grey arrow
orrespond to tiles, whi
h are assigned to the same CPU of the SMPnode. They are exe
uted one after the other, during
onse
utive time steps.We seek for an appropriate transformation matrix that will group together the tiles of Fig-ure 4.5, whi
h
an be exe
uted simultaneously by di�erent CPUs. The exe
ution of the portionof the tile spa
e, whi
h has been assigned to an SMP node, resembles the exe
ution of a UETgrid, as des
ribed in [AKPT99℄. A

ording to [AKPT99℄, the optimal valid linear s
hedulingve
tor for an iteration spa
e (or tile spa
e) with unitary dependen
e ve
tors (as imposed by
§B.5), is (1, 1, 1), when the time required for
ommuni
ation is minimal. In our example, the
ommuni
ation among CPUs of a node re
oils to a syn
hronization. Thus, it may be
onsidered

92 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)

onformal to the UET
ommuni
ation model. So, we shall group together the tiles that belongto the same plane whi
h is perpendi
ular to the ve
tor (1, 1, 1), as indi
ated in Figure 4.6.

Sj 2

Sj1

Sj3

Sj 2

Sj1

Sj3

Sj2

Sj1

Sj3

Sj 2

Sj1

Sj 3

Figure 4.6: Groups of tiles exe
uted simultaneously in an SMP node.The tiles of the same grey plane belong to the same group and will be exe
uted at the same timeby di�erent CPUs of the same node. Sub�gures
orrespond to
onse
utive time steps.The
olumn-ve
tors of the inverse grouping matrix PG de�ne a hyper-parallelepiped (ingeneral) that
ontains the tiles of a group, similar to the way the
olumns of P de�ne a tile.Thus, ve
tors ~pG
2 and ~pG

3 should be parallel to the plane jS
1 + jS

2 + jS
3 = const and, at the sametime, they should be parallel to one of the planes de�ning the bounds of the set allo
ated tothis SMP node. That is, they should be parallel to the planes jS

3 = 0 and jS
2 = 0 respe
tively.Therefore, the appropriate ve
tors are

~pG
2 = λ(−1, 1, 0) and ~pG

3 = µ(−1, 0, 1)(In Figures 4.5-4.7 it holds λ = 4, µ = 2.) In addition, in order to
over exa
tly the part of thetile spa
e allo
ated to an SMP node using a series of su

essive groups, ve
tor ~pG
1 should be
onstru
ted parallel to both the planes jS

2 = 0 and jS
3 = 0. Therefore, the appropriate ve
tor is

~pG
1 = (1, 0, 0)

4.4 Determining P G a

ording to the number of CPUs within an SMP node 93
Thus, the appropriate inverse grouping matrix is

PG =




1 −λ −µ

0 λ 0

0 0 µ


where λ, µ ∈ N . The maximum number of tiles grouped together will be det(PG) = λµ and thisprodu
t must be equal to the number of CPUs inside a node, so as to assign one tile to ea
hCPU during ea
h time step.

Sj2

Sj1

Sj3

Gp2

Gp3

Gp1Figure 4.7: Constru
ting the inverse grouping matrix.Ve
tors pG
i should be parallel to the edges of a group-parallelepiped. Their norm should be equalto the length of the
orresponding edge.4.4 Determining PG a

ording to the number of CPUs withinan SMP nodeConsider now the general
ase: We have an n-dimensional tiled iteration spa
e and an homoge-neous
luster of identi
al SMP nodes, ea
h with m pro
essors inside. Our obje
tive is to assignthe tiles of JS along the �rst dimension to the same CPU of an SMP node. The natural number

m
an be written asm = m2×m3×· · ·×mn, wherem2,m3, . . . ,mn ∈ N . The grouping matri
esare sele
ted to be
PG =




1 −m2 . . . −mn

0 m2 . . . 0...
0 0 . . . mn




and HG = (PG)−1 =




1 1 . . . 1

0 1
m2

. . . 0...
0 0 . . . 1

mn




(4.2)

94 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
The maximum number of tiles
ontained inside a group is det(PG) = m, exa
tly equal to thenumber of CPUs inside ea
h SMP node.Theorem 4.1 In the algorithmi
 model, whi
h is summarized in Appendix B, matrix HG, de-�ned by formula (4.2), de�nes a legal grouping transformation.Proof: In order to prove that HG de�nes a legal grouping transformation, it suÆ
es toprove that1. HGDS ≥ 0, where DS is the dependen
e matrix of the tile spa
e JS2. any two tiles ~jS , ~jS ′ within the same group are independent.We have assumed (see §2.6.3 and restri
tion B.5) that the dependen
e matrix DS
ontainsonly 0's and 1's. Consequently, the �rst
ondition is apparently valid.In order to prove the se
ond
ondition, we assume that the dependen
e matrix DS is equalto the unitary matrix. Even if there is a dependen
e ve
tor with more than one 1's, it is thesum of more than one unitary dependen
e ve
tors. So it will be in
luded in the followingproof as an indire
t dependen
e:If tiles ~jS , ~jS ′

∈ JS belong to the same group ~jG, then it holds that:
⌊HG ~jS⌋ = ⌊HG ~jS ′

⌋ ⇒




jS
1 + jS

2 + · · · + jS
n

⌊
jS
2

m2
⌋...

⌊
jS
n

mn
⌋




=




jS
1
′
+ jS

2
′
+ · · · + jS

n

′

⌊
jS
2

′

m2
⌋...

⌊
jS
n

′

mn
⌋




⇒

jS
1 + jS

2 + · · · + jS
n−1 + jS

n = jS
1

′
+ jS

2

′
+ · · · + jS

n−1

′
+ jS

n

′In addition, if there is a dire
t or an indire
t dependen
e from ~jS to ~jS ′, it holds that
~jS ′

= ~jS +
n∑

i=1

λi
~di,where λi ∈ N and ~di is a unitary dependen
e ve
tor. The previous equality
an be rewrittenas follows: ~jS ′

= ~jS + ~λ, where ~λ = (λ1, . . . , λn). Thus,
jS
i

′
= jS

i + λi, i = 1, . . . , nTherefore, the equality jS
1 +jS

2 + · · ·+jS
n−1 +jS

n = jS
1
′
+jS

2
′
+ · · ·+jS

n−1
′
+jS

n

′
an be rewrittenas follows:
λ1 + λ2 + · · · + λn = 0As λ1, . . . , λn ∈ N , it holds that
λ1 = · · · = λn = 0Consequently, there is no dire
t or indire
t dependen
e between two tiles belonging to thesame group ~jG ∈ JG and all tiles of a group in JG
an be
omputed simultaneously by theCPUs of an SMP node. Thus, the above grouping transformation is valid a

ording to ouralgorithmi
 model. ⊣

4.4 Determining P G a

ording to the number of CPUs within an SMP node 95
Example 4.1: We a�ord a
luster of SMP nodes with 2 CPUs and one NIC (NetworkInterfa
e Card) ea
h. The NICs provide the fa
ility of Dire
t Memory A

ess (DMA). Thus, theoverlapping exe
ution poli
y
an be implemented. We assume a 2-dimensional re
tangular tilespa
e JS . Let us assign the tiles along dimension jS

1 to the same CPU, as indi
ated in Figure 4.8by the grey arrows. The CPUs of the same SMP node will pro
ess two neighboring rows of tiles.Then, during the time step t=0, CPU 0 of SMP node 0
omputes tile (0, 0). During the timestep t = 1, CPU 0 of node 0
omputes tile (1, 0), while CPU 1 of the same SMP node
omputestile (0, 1). Similarly, during the time step t = 2, CPU 0
omputes tile (2, 0), while CPU 1
omputes tile (1, 1). At the same time, the data
omputed in tile (0, 1), whi
h are ne
essary forthe
omputation of tile (0, 2),
an be sent to node 1. During the time step t=3, the CPUs ofnode 0
an
ontinue the exe
ution as above, while the CPUs of node 1 start exe
uting the sameroutine with the rows of tiles (•, 2) and (•, 3).
S
j
2

S
j
1

0

3

1
 2
 3
 4
 5
 6

4
 5
 6
 7
 8
 9

10

node0

node1

tile(2,1)
 tile(3,0)

group(3,0)

tile(0,3)

tile(1,2)

group(3,1)

7

CPU0

CPU1

CPU0

CPU1

2
 3
 4
 5
 6
 7
 8

Figure 4.8: Example 4.1 - Tile spa
e.Grey dots
orrespond to tiles. Tiles along the same grey arrow will be exe
uted by the same CPUduring
onse
utive time steps. The grey rounded re
tangles indi
ate whi
h tiles will be exe
utesby the CPUs of the same SMP node. The ovals indi
ate tiles that are grouped together andwill be exe
uted by di�erent CPUs of the same node, during the same time step. The bla
karrows indi
ate dependen
es between tiles that will be exe
uted in di�erent SMP nodes and,thus, require a data transfer. The labels in the ovals-groups or besides bla
k arrows-dependen
esindi
ate during whi
h time step ea
h group will be exe
uted and ea
h data transfer will takepla
e, a

ording to the overlapping exe
ution poli
y.In order to
onstru
t a time s
hedule for this example, we group together the tiles thatshould be
on
urrently exe
uted by the same SMP node. In parti
ular, we apply grouping tothe tile spa
e JS , as indi
ated in Figure 4.8 and derive the group spa
e JG (Figure 4.9). Theappropriate grouping matri
es, a

ording to formula (4.2), for this
ase are
PG =

[
1 −2

0 2

] and HG = (PG)−1 =

[
1 1

0 1
2

]

96 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
G
j
2

G
j
1

node0

node1

0
 1
 2
 3
 4
 5
 6
 7

2
 3
 4
 5
 6
 7
 8

3
 4
 5
 6
 7
 8
 9
 10

group(3,1)

group(3,0)
Figure 4.9: Example 4.1 - Group spa
e.Grey dots
orrespond to groups arising when applying the sele
ted grouping transformation tothe tile spa
e of Figure 4.8. Groups along the same grey arrow will be exe
uted in the same SMPnode during
onse
utive time steps. As in Figure 4.8, the bla
k arrows indi
ate dependen
esbetween groups that will be exe
uted in di�erent SMP nodes and, thus, require a data transfer.The labels besides the dots-groups or bla
k arrows-dependen
es indi
ate during whi
h time stepea
h group will be exe
uted and ea
h data transfer will take pla
e, a

ording to the overlappingexe
ution poli
y.In this way, tiles (1, 0) and (0, 1) whi
h, as we have already mentioned, are simultaneouslyexe
uted by the same SMP node, are grouped together in ~jG = ⌊HG(1, 0)T ⌋ = ⌊HG(0, 1)T ⌋ =

(1, 0)T . Similarly, tiles (2, 0) and (1, 1) are grouped together in ~jG = (2, 0)T . In Figures 4.8-4.9,the time step, when ea
h group will be
omputed, is shown, together with the time step, whenea
h data transfer will take pla
e.Table 4.1: Example 4.1The
olumns labelled as \CPU x" indi
ate whi
h tile will be exe
uted by ea
h CPU of an SMPnode during ea
h time step, a

ording to the overlapping exe
ution poli
y. The
olumns labelledas \group" indi
ate the group
orresponding to the tiles exe
uted by both CPUs of an SMP nodeat the same time.Time node 0 node 1Step CPU 0 CPU 1 group CPU 0 CPU 1 group0 �
0
0

� �
0
0

�1 �
1
0

� �
0
1

� �
1
0

�2 �
2
0

� �
1
1

� �
2
0

�3 �
3
0

� �
2
1

� �
3
0

� �
0
2

� �
2
1

�4 �
4
0

� �
3
1

� �
4
0

� �
1
2

� �
0
3

� �
3
1

�5 �
5
0

� �
4
1

� �
5
0

� �
2
2

� �
1
3

� �
4
1

�6 �
6
0

� �
5
1

� �
6
0

� �
3
2

� �
2
3

� �
5
1

�In Table 4.1, we indi
ate the tiles of the tile spa
e JS that will be exe
uted by ea
h CPUof the �rst 2 SMP nodes during a time step and their
orresponding group
oordinates. It
an be easily dedu
ed that a group ~jG = (jG
1 , j

G
2) ∈ JG will be exe
uted during the time step

t(~jG) = jG
1 + jG

2 in the SMP node jG
2 . Therefore, the linear time s
heduling ve
tor for this

4.4 Determining P G a

ording to the number of CPUs within an SMP node 97
example is ΠG = (1, 1).
Example 4.2: In
ase the NICs of our
luster do not support DMA, then Example 4.1 shouldbe modi�ed as follows: During the time step t=0, CPU 0 of the SMP node 0
omputes tile (0, 0).During the time step t = 1, CPU 0 of node 0
omputes tile (1, 0), while CPU 1 of the same SMPnode
omputes tile (0, 1). Just when the
omputation of both tiles is
ompleted, data neededfor the
omputation of tile (2, 0), whi
h have just been
omputed in node 0 are transferred tonode 1. During the time step t = 2, the CPUs of node 0
an
ontinue the exe
ution as above,while the CPUs of node 1 start exe
uting the same routine with the rows of tiles (•, 2) and (•, 3).

Sj 2

Sj1
0

2

1 2 3 4 5 6

3 4 5 6 7 8
9

node0

node1

tile(2,1) tile(3,0)group(3,0)

tile(0,3) tile(1,2)
group(3,1)

7
CPU0

CPU1

CPU0
CPU1

1 2 3 4 5 6 7

Figure 4.10: Example 4.2 - Tile spa
e.As in Figure 4.8, the labels in the ovals-groups or besides bla
k arrows-dependen
es indi
ateduring whi
h time step ea
h group will be exe
uted and ea
h data transfer will take pla
e,a

ording to the non-overlapping exe
ution poli
y.
Gj2

Gj1
node0

node1

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7
2 3 4 5 6 7 8 9
group(3,1)

group(3,0)Figure 4.11: Example 4.2 - Group spa
e.As in Figure 4.9, the labels besides the dots-groups or bla
k arrows-dependen
es indi
ate duringwhi
h time step ea
h group will be exe
uted and ea
h data transfer will take pla
e, a

ording tothe non-overlapping exe
ution poli
y.In order to
onstru
t a time s
hedule for this example, as in Example 4.1, we group to-gether the tiles that should be
on
urrently exe
uted by the same SMP node. In parti
ular,we apply grouping to the tile spa
e JS , as indi
ated in Figure 4.10 and derive the group spa
e

98 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
JG (Figure 4.11). The grouping matri
es are identi
al to the ones used in Example 4.1. InFigures 4.10-4.11, the time step, when ea
h group will be
omputed, is shown, together with thetime step, when ea
h data transfer will take pla
e.Table 4.2: Example 4.2As in Table 4.1, the
olumns labelled as \CPU x" indi
ate whi
h tile will be exe
uted by ea
hCPU of an SMP node during ea
h time step, a

ording to the non-overlapping exe
ution poli
y.The
olumns labelled as \group" indi
ate the group
orresponding to the tiles exe
uted by bothCPUs of an SMP node at the same time.Time node 0 node 1Step CPU 0 CPU 1 group CPU 0 CPU 1 group0 �

0
0

� �
0
0

�1 �
1
0

� �
0
1

� �
1
0

�2 �
2
0

� �
1
1

� �
2
0

� �
0
2

� �
2
1

�3 �
3
0

� �
2
1

� �
3
0

� �
1
2

� �
0
3

� �
3
1

�4 �
4
0

� �
3
1

� �
4
0

� �
2
2

� �
1
3

� �
4
1

�3 �
5
0

� �
4
1

� �
5
0

� �
3
2

� �
2
3

� �
5
1

�In Table 4.2, we indi
ate the tiles of the tile spa
e JS that will be exe
uted by ea
h CPUof the �rst 2 SMP nodes during a time step and their
orresponding group
oordinates. It
an be easily dedu
ed that a group ~jG = (jG
1 , j

G
2) ∈ JG will be exe
uted during the time step

t(~jG) = jG
1 in the SMP node jG

2 . Therefore, the linear time s
heduling ve
tor for this example is
ΠG = (1, 0). Thus, we may equivalently s
hedule tiles, instead of groups, using the linear times
heduling ve
tor Π = (1, 1).
4.4.1 Linear time s
heduleTheorem 4.2 When applying the overlapping exe
ution poli
y, the appropriate linear times
heduling ve
tor for the group spa
e derived by grouping, as de�ned in formula (4.2), is ΠG =

(1, 1, . . . , 1).Proof: Applying the grouping transformation de�ned by formula (4.2), the 1-st
olumn-ve
tor of the dependen
e matrix DS = I is transformed to the ve
tor ~
dG
1
′

= HG ~dS
1 =

(1, 0, . . . , 0)T . In addition, the j-th
olumn-ve
tor of the dependen
e matrix DS = I, j =

2, . . . , n, is transformed to the ve
tor
HG ~dS

j = (1, 0, . . . , 0,
1

mj

, 0, . . . , 0)T .

4.4 Determining P G a

ording to the number of CPUs within an SMP node 99
Thus, it imposes group dependen
es

(1, 0, . . . , 0, ⌊
1

mi

⌋, 0, . . . , 0)T = (1, 0, . . . , 0, 0, 0, . . . , 0)Tand
(1, 0, . . . , 0, ⌈

1

mj

⌉, 0, . . . , 0)T = (1, 0, . . . , 0, 1, 0, . . . , 0)TThus, the dependen
e matrix of the group spa
e
an be written as:
DG =




1 1 . . . 1 1

0 1 . . . 0 0...
0 0 . . . 1 0

0 0 . . . 0 1



.We are sear
hing for an appropriate linear time s
heduling ve
tor ΠG = (πG

1 , . . . , π
G
n)su
h that ea
h group ~jG ∈ JG is
omputed during the time step t = ΠG ~jG. Consider thelast (n− 1)
oordinates of a group indi
ating whi
h SMP node of the
luster will exe
ute thisgroup. Then, groups ~jG = (jG

1 , . . . , j
G
n) and ~jG′

= (jG
1 + 1, jG

2 , . . . , j
G
n) will be su

essively
omputed within the same SMP node. There is a dependen
e between them, as indi
ated bythe �rst
olumn of DG, but there is no need for a
ommuni
ation step between their su

essive
omputation steps, be
ause the ne
essary data are already lo
ated in the lo
al shared memoryof the SMP node. Consequently, their time distan
e ΠG ~jG′

− ΠG ~jG = πG
1 may be equal to

1. Thus, πG
1 = 1. In addition, the i-th
olumn of DG (i = 2, . . . n) imposes a dependen
ebetween groups ~jG = (jG

1 , . . . , j
G
n) and ~jG′

= (jG
1 +1, jG

2 , . . . , j
G
i−1, j

G
i +1, jG

i+1, . . . , j
G
n). Thesegroups are exe
uted in neighboring SMP nodes, thus a
ommuni
ation step is required betweentheir
omputation steps. It means that their time distan
e ΠG ~jG′

−ΠG ~jG = πG
1 +πG

i must beequal to 2. Consequently, πG
i = 1, i = 2, . . . , n. So, the ve
tor ΠG = (1, 1, . . . , 1) is sele
tedfor the linear time s
heduling of our group spa
e JG. ⊣Noti
e that, in [GSK01℄, [STK02℄, for the single CPU pipelined s
hedule, Π was (1, 2, . . . , 2)a

ording to the UET-UCT theory [AKPT99℄. In other words, the optimal overlapping s
hedule
ould be a
hieved when we had equal
omputation to
ommuni
ation times, so that all
ommu-ni
ation
ould be hidden (overlapped) with the
omputation phase. Nevertheless, in the SMP
ase presented here, the labeling of
oordinates of groups, that is the grouping transformation

PG, slightly skews the spa
e (see Figure 4.8 and the resulting group spa
e in Figure 4.9, therelative positions of groups (3, 0) and (3, 1)). So the optimal overlapping s
hedule is a
hievedby (1, 1, . . . , 1). Noti
e, also, that this s
heduling ve
tor is not the same with Hodzi
's [HS98℄s
heduling ve
tor, sin
e we are now referring to groups, while Hodzi
 was s
heduling tiles.Theorem 4.3 When applying the non-overlapping exe
ution poli
y, the appropriate linear times
heduling ve
tor for the group spa
e derived by grouping, as de�ned in formula (4.2), is ΠG =

(1, 0, . . . , 0).

100 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
Proof: As in the proof of Theorem 4.2, the dependen
e matrix of the group spa
e is:

DG =




1 1 . . . 1 1

0 1 . . . 0 0...
0 0 . . . 1 0

0 0 . . . 0 1



.We are sear
hing, again, for an appropriate linear time s
heduling ve
tor ΠG = (πG

1 , . . . , π
G
n)su
h that ea
h group ~jG ∈ JG is
omputed during the time step t = ΠG ~jG. Consider the last

(n−1)
oordinates of a group indi
ating whi
h SMP node of the
luster will exe
ute this group.Then, groups ~jG = (jG
1 , . . . , j

G
n) and ~jG′

= (jG
1 + 1, jG

2 , . . . , j
G
n) will be su

essively
omputedwithin the same SMP node. Consequently, their time distan
e ΠG ~jG′

− ΠG ~jG = πG
1 may beequal to 1. Thus πG

1 = 1. In addition, the i-th
olumn of DG (i = 2, . . . n) imposes a depen-den
e between groups ~jG = (jG
1 , . . . , j

G
n) and ~jG′

= (jG
1 +1, jG

2 , . . . , j
G
i−1, j

G
i +1, jG

i+1, . . . , j
G
n).These groups are exe
uted in neighboring SMP nodes, thus a data transfer should take pla
ebetween the respe
tive
omputations. In
ontrast to the overlapping exe
ution poli
y, thisdata transfer may take pla
e during the time step, when data are
omputed, just after the
ompletion of
omputation. Thus, their time distan
e ΠG ~jG′

− ΠG ~jG = πG
1 + πG

i may beequal to 1. Consequently, πG
i = 0, i = 2, . . . , n. So, the ve
tor ΠG = (1, 0, . . . , 0) is sele
tedfor the linear time s
heduling of our group spa
e JG. ⊣As in Example 4.2, noti
e that linear s
heduling of groups, using ve
tor ΠG = (1, 0, . . . , 0),is equivalent to linear s
heduling of tiles, using ve
tor Π = (1, 1, . . . , 1). Thus, the only reasonsfor grouping tiles, when an overlapping exe
ution is not possible, or not desired, are1.
omparison with the overlapping exe
ution2. emphasizing the fa
t that data originating in the same group, albeit in di�erent tiles, maybe transferred in a single message.Example 4.3: Consider a re
tangular n-dimensional tile spa
e JS : 0 ≤ jS

i ≤ uS
i , i = 1, . . . , nand uS

1 ≥ uS
i , i = 2, . . . , n. We apply grouping transformation, a

ording to the formula (4.2).Thus, tile ~jS belongs to group ~jG = (

n∑
i=1

jS
i , ⌊

jS
2

m2
⌋, . . . , ⌊ jS

n

mn
⌋)T .A

ording to the overlapping exe
ution poli
y, it will be exe
uted during the time step

t(~jG) =
n∑

i=1
jG
i =

n∑
i=1

jS
i +

n∑
i=2

⌊
jS
i

mi
⌋ (a

ording to the linear time s
heduling ve
tor ΠG =

(1, 1, . . . , 1)). Group (0, 0, 0) will be exe
uted during the �rst time step tmin = 0. Group
(

n∑
i=1

uS
i , ⌊

uS
2

m2
⌋, . . . , ⌊ uS

n

mn
⌋) will be
omputed during the last time step tmax =

n∑
i=1

uS
i +

n∑
i=2

⌊
uS

i

mi
⌋.Thus, the number of time steps required for the
ompletion of the exe
ution (makespan), is:

4.4 Determining P G a

ording to the number of CPUs within an SMP node 101
℘

overlap = 1 + tmax − tmin =
n∑

i=1
uS

i +
n∑

i=2
⌊

uS
i

mi
⌋ + 1 =

n∑
i=1

(wS
i − 1) +

n∑
i=2

⌊
wS

i −1
mi

⌋ + 1
(C.4)
⇒

℘
overlap =

n∑

i=1

wS
i +

n∑

i=2

⌈
wS

i

mi
⌉ − 2n+ 2 (4.3)where ws

i = us
i + 1, i = 1, . . . , n is the width of the tile spa
e along dimension i.Similarly, following the non-overlapping exe
ution poli
y, group

~jG = (
n∑

i=1

jS
i , ⌊

jS
2

m2
⌋, . . . , ⌊

jS
n

mn
⌋)Twill be exe
uted during the time step t(~jG) = jG

1 =
n∑

i=1
jS
i (a

ording to the linear time s
hedulingve
tor ΠG = (1, 0, . . . , 0)). Group (0, 0, 0) will be exe
uted during the �rst time step tmin = 0.Group (

n∑
i=1

uS
i , ⌊

uS
2

m2
⌋, . . . , ⌊ uS

n

mn
⌋) will be
omputed during the last time step tmax =

n∑
i=1

uS
i .Thus, the number of time steps required for the
ompletion of the exe
ution (makespan), is:

℘
nonoverlap = 1 + tmax − tmin =

n∑
i=1

uS
i + 1 ⇒

℘
nonoverlap =

n∑

i=1

wS
i − n+ 1 (4.4)

4.4.2 Assigning Tiles to CPUsFor node labelling reasons,
onsider that the available SMP nodes form a virtual (n − 1)-dimensional mesh. Thus, ea
h node is identi�ed by a (n−1)-dimensional ve
tor. Note, however,that it is not a physi
al layout restri
tion, but a
onvention to give ea
h node a unique tag. Then,the last (n − 1)
oordinates of a group indi
ate the SMP into whi
h it will be exe
uted. The�rst
oordinate a�e
ts only the time of its exe
ution. Thus, a tile ~jS = (jS
1 , . . . , j

S
n), belongingto group ~jG = (jG

1 , . . . , j
G
n), will be exe
uted in node (jG

2 , . . . , j
G
n) = (⌊

jS
2

m2
⌋, . . . , ⌊ jS

n

mn
⌋).Similarly, inside ea
h SMP node we
onsider a (n − 1)-dimensional CPU virtual mesh
on-taining labels { ~cpu ∈ Zn−1|0 ≤ cpux < mx+1, 1 ≤ x ≤ n − 1}. Then, a tile ~jS = (jS

1 , . . . , j
S
n)will be exe
uted by CPU (jS

2 %m2, . . . , j
S
n %mn) of SMP node (⌊

jS
2

m2
⌋, . . . , ⌊ jS

n

mn
⌋). So, apparently,only tiles with the same
oordinate jS

1 will be assigned to the same CPU of the same node.In addition, note that, if one of the diagonal elements of the inverse grouping matrix mxequals to 1, then the
orresponding
oordinate of the CPU identi�
ation ve
tor
an be omitted,

102 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
as it will always equal 0.
4.4.3 Generalization: Grouping tiles along an arbitrary dimension of JSIf we want to assign the iterations along the i-th dimension of JS to the same CPU of an SMPnode, then it
an be similarly proven that the appropriate grouping matri
es are

PG =




m1 . . . 0 0 0 . . . 0...
0 . . . mi−1 0 0 . . . 0

−m1 . . . −mi−1 1 −mi+1 . . . −mn

0 . . . 0 0 mi+1 . . . 0...
0 . . . 0 0 0 . . . mn




HG = (PG)−1 =




1
m1

. . . 0 0 0 . . . 0...
0 . . . 1

mi−1
0 0 . . . 0

1 . . . 1 1 1 . . . 1

0 . . . 0 0 1
mi+1

. . . 0...
0 . . . 0 0 0 . . . 1

mn




(4.5)
where m1 × · · · ×mi−1 ×mi+1 × · · · ×mn = m. As previously, the time s
heduling ve
tor is

ΠG = (1, . . . , 1) if the overlapping exe
ution poli
y is followed, or ΠG = (0, . . . , 0, 1, 0, . . . , 0)otherwise. In addition, tile ~jS = (jS
1 , . . . , j

S
n) belonging to group ~jG = (jG

1 , . . . , j
G
n), will beexe
uted within node (jG

1 , . . . , j
G
i−1, j

G
i+1, . . . , j

G
n) by CPU (jS

1 %m1, . . . , j
S
i−1%mi−1, j

S
i+1%mi+1,

. . . , jS
n %mn). As previously, if one of the diagonal elements of the inverse grouping matrix

mx = 1, x 6= i, then the
orresponding
oordinate of the CPU identi�
ation ve
tor
an beomitted.Example 4.4: We have a
luster of SMP nodes with 2 CPUs and a NIC ea
h. We assume a
3-dimensional re
tangular tile spa
e JS . Let us assign the tiles along dimension jS

3 to the sameCPU, as indi
ated in Figure 4.12 by the grey arrows. The CPUs of the same SMP node willexe
ute two neighboring rows of tiles, whi
h belong to the same jS
1 − jS

3 plane. In respe
t to theformula (4.5), we
hoose the grouping matri
es to be:

4.4 Determining P G a

ording to the number of CPUs within an SMP node 103
PG =




2 0 0

0 1 0

−2 −1 1


 and HG = (PG)−1 =




1
2 0 0

0 1 0

1 1 1


 .

Sj1

Sj3

Sj2

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
	
��

�
�� ��
� �
 � �

�
�

�
 �� ��
 ��

Figure 4.12: Example 4.4 - 2 × 1 CPUs per SMP node - Overlapping exe
ution.All tiles along the same grey arrow will be exe
uted by the same CPU during
onse
utive timesteps. The grey areas indi
ate whi
h tiles will be exe
utes by the CPUs of the same SMP node.The ovals indi
ate tiles that are grouped together and will be exe
uted by di�erent CPUs of thesame node, during the same time step. The bla
k arrows indi
ate dependen
es between tilesthat will be exe
uted in di�erent SMP nodes and, thus, require a data transfer. The labels inthe ovals-groups or besides bla
k arrows-dependen
es indi
ate during whi
h time step ea
h groupwill be exe
uted and ea
h data transfer will take pla
e, a

ording to the overlapping exe
utionpoli
y.In Figure 4.12 we show the grouping of tiles and when ea
h
omputation step and ea
h
ommuni
ation step will take pla
e, a

ording to the overlapping exe
ution poli
y. In Table 4.3,we indi
ate the tiles of JS that will be exe
uted by ea
h CPU of the 3 neighboring SMP nodes
(0, 1), (0, 0), (1, 0) during ea
h time step. It
an be easily dedu
ed that a group (jG

1 , j
G
2 , j

G
3) ∈ JGwill be exe
uted in node (jG

1 , j
G
2) during the time step t(~jG) = jG

1 + jG
2 + jG

3 . Therefore, asexpe
ted, the linear time s
heduling ve
tor for this example is ΠG = (1, 1, 1).Similarly, in Figure 4.13, we show the grouping of tiles and when ea
h
omputation step andea
h
ommuni
ation step will be exe
uted, a

ording to the non-overlapping exe
ution poli
y.In Table 4.4, we indi
ate the tiles of JS that will be exe
uted by ea
h CPU of the 3 neighboringSMP nodes (0, 1), (0, 0), (1, 0) during ea
h time step. It
an be easily dedu
ed that a group
(jG

1 , j
G
2 , j

G
3) ∈ JG will be exe
uted in node (jG

1 , j
G
2) during the time step t(~jG) = jG

3 . Therefore,as expe
ted, the linear time s
heduling ve
tor for this example is ΠG = (0, 0, 1).

104 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
Table 4.3: Example 4.4 - 2 × 1 CPUs per SMP node - Overlapping exe
utionTime node (0,1) node (0,0) node (1,0)Step CPU 0 CPU 1 group CPU 0 CPU 1 group CPU 0 CPU 1 group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
1
0

1A 0� 0
1
1

1A 0� 0
0
2

1A 0� 1
0
1

1A 0� 0
0
2

1A3 0� 0
1
1

1A 0� 1
1
0

1A 0� 0
1
2

1A 0� 0
0
3

1A 0� 1
0
2

1A 0� 0
0
3

1A 0� 2
0
0

1A 0� 1
0
2

1A4 0� 0
1
2

1A 0� 1
1
1

1A 0� 0
1
3

1A 0� 0
0
4

1A 0� 1
0
3

1A 0� 0
0
4

1A 0� 2
0
1

1A 0� 3
0
0

1A 0� 1
0
3

1A5 0� 0
1
3

1A 0� 1
1
2

1A 0� 0
1
4

1A 0� 0
0
5

1A 0� 1
0
4

1A 0� 0
0
5

1A 0� 2
0
2

1A 0� 3
0
1

1A 0� 1
0
4

1A
Sj1

Sj3

Sj2

node(0,0) node(1,0)

node(0,1) node(1,1)

0
1

2

3

4

2
3

4

5
6

1

1
2

3

3

4

2

3

4

2

3

0
2

1

3

2

2 3
3

Figure 4.13: Example 4.4 - 2 × 1 CPUs per SMP node - Non-overlapping exe
utionExample 4.5: We have a
luster of SMP nodes with 4 CPUs and a NIC ea
h. As previously,we assume a 3-dimensional re
tangular tile spa
e JS . Let us assign the tiles along dimension jS
3to the same CPU, as indi
ated in Figure 4.14 by the grey arrows. The CPUs of the same SMPnode will undertake 4 neighboring lines of tiles whi
h belong to the same jS

1 − jS
3 plane.A

ording to formula (4.5), we
hoose the grouping matri
es to be

PG =




4 0 0

0 1 0

−4 −1 1


 and HG = (PG)−1 =




1
4 0 0

0 1 0

1 1 1


In Figure 4.14 we indi
ate the grouping of tiles and during whi
h time step ea
h
omputation

4.4 Determining P G a

ording to the number of CPUs within an SMP node 105
Table 4.4: Example 4.4 - 2 × 1 CPUs per SMP node - Non-overlapping exe
utionTime node (0,1) node (0,0) node (1,0)Step CPU 0 CPU 1 group CPU 0 CPU 1 group CPU 0 CPU 1 group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
1
0

1A 0� 0
1
1

1A 0� 0
0
1

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
1
1

1A 0� 1
1
0

1A 0� 0
1
2

1A 0� 0
0
2

1A 0� 1
0
1

1A 0� 0
0
2

1A 0� 2
0
0

1A 0� 1
0
2

1A3 0� 0
1
2

1A 0� 1
1
1

1A 0� 0
1
3

1A 0� 0
0
3

1A 0� 1
0
2

1A 0� 0
0
3

1A 0� 2
0
1

1A 0� 3
0
0

1A 0� 1
0
3

1A4 0� 0
1
3

1A 0� 1
1
2

1A 0� 0
1
4

1A 0� 0
0
4

1A 0� 1
0
3

1A 0� 0
0
4

1A 0� 2
0
2

1A 0� 3
0
1

1A 0� 1
0
4

1A
step and ea
h
ommuni
ation step will take pla
e, following the overlapping exe
ution poli
y. InTable 4.5 we indi
ate whi
h tiles of the tile spa
e JS will be exe
uted by ea
h CPU of the �rst 3SMP nodes of our
luster during a time step. In addition, we indi
ate whi
h is the
orrespondinggroup of JG. It
an be easily dedu
ed from Table 4.5 that a group (jG

1 , j
G
2 , j

G
3) ∈ JG will beexe
uted in the SMP node (jG

1 , j
G
2) during the time step t(~jG) = jG

1 + jG
2 + jG

3 . Therefore, thelinear time s
heduling ve
tor for this example is ΠG = (1, 1, 1).Similarly, in Figure 4.15 we indi
ate the grouping of tiles and during whi
h time step ea
h
omputation step and ea
h
ommuni
ation step will take pla
e, following the non-overlappingexe
ution poli
y. In Table 4.6 we indi
ate whi
h tiles of the tile spa
e JS will be exe
utedby ea
h CPU of the �rst 3 SMP nodes of our
luster during a time step. In addition, weindi
ate whi
h is the
orresponding group of JG. It
an be easily dedu
ed from Table 4.6 thata group (jG
1 , j

G
2 , j

G
3) ∈ JG will be exe
uted in the SMP node (jG

1 , j
G
2) during the time step

t(~jG) = jG
3 = jS

1 + jS
2 + jS

3 . Therefore, the linear time s
heduling ve
tor for this example is
ΠG = (0, 0, 1).
Example 4.6: We have a
luster of SMP nodes with 4 CPUs and a NIC ea
h. As previously,we assume a 3-dimensional re
tangular tile spa
e JS . The CPUs of the same SMP node under-take 4 neighboring lines of tiles whose proje
tion on the jS

1 − jS
2 plane forms a square. Thus,

106 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
Sj1

Sj3

Sj2

node(0,0) node(1,0)

node(0,1)

0

1 2

3

4

5

6

7

8 9

10

5

6 7

8

9

10

11

12

13 14

15

2

3

4

1
2

2

3
3

3
4

5

6

7

8

9

10

11Figure 4.14: Example 4.5 - 4 × 1 CPUs per SMP node - Overlapping exe
ution.As in Figure 4.12, the labels in the ovals-groups or besides bla
k arrows-dependen
es indi
ateduring whi
h time step ea
h group will be exe
uted and ea
h data transfer will take pla
e,a

ording to the overlapping exe
ution poli
y.a

ording to formula (4.5), the grouping matri
es are
PG =




2 0 0

0 2 0

−2 −2 1


 and HG = (PG)−1 =




1
2 0 0

0 1
2 0

1 1 1


In Figure 4.16, we indi
ate whi
h tiles of JS will be undertaken by ea
h SMP node. InFigure 4.17, we have zoomed to the part of JS assigned to an SMP node and we indi
ate whi
htiles of this part will be exe
uted simultaneously by di�erent CPUs. These tiles belong to thesame grey plane. In Table 4.7 we indi
ate whi
h tiles of the tile spa
e JS will be exe
uted byea
h CPU of the �rst 3 SMP nodes of our
luster during a time step, following the overlappingexe
ution poli
y. In addition, we indi
ate whi
h is the
orresponding group of JG. As inExamples 4.4 and 4.5, it
an be dedu
ed that a group (jG

1 , j
G
2 , j

G
3) ∈ JG will be exe
uted inSMP node (jG

1 , j
G
2) during the time step t(~jG) = jG

1 + jG
2 + jG

3 . Therefore, the linear times
heduling ve
tor for this example is ΠG = (1, 1, 1).Similarly, in Table 4.8 we indi
ate whi
h tiles of the tile spa
e JS will be exe
uted by ea
hCPU of the �rst 3 SMP nodes of our
luster during a time step, following the non-overlapping

4.4 Determining P G a

ording to the number of CPUs within an SMP node 107
Table 4.5: Example 4.5 - 4 × 1 CPUs per SMP node - Overlapping exe
ution.Sin
e CPUs inside an SMP node form a 4×1 mesh, we have omitted the se
ond dimension whenlabelling CPUs. It would be always equal to 0, as explained in page 102.Time node (0,0)Step CPU 0 CPU 1 CPU 2 CPU 3 group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
0
2

1A 0� 1
0
1

1A 0� 2
0
0

1A 0� 0
0
2

1A3 0� 0
0
3

1A 0� 1
0
2

1A 0� 2
0
1

1A 0� 3
0
0

1A 0� 0
0
3

1A4 0� 0
0
4

1A 0� 1
0
3

1A 0� 2
0
2

1A 0� 3
0
1

1A 0� 0
0
4

1A5 0� 0
0
5

1A 0� 1
0
4

1A 0� 2
0
3

1A 0� 3
0
2

1A 0� 0
0
5

1ATime node (0,1)Step CPU 0 CPU 1 CPU 2 CPU 3 group2 0� 0
1
0

1A 0� 0
1
1

1A3 0� 0
1
1

1A 0� 1
1
0

1A 0� 0
1
2

1A4 0� 0
1
2

1A 0� 1
1
1

1A 0� 2
1
0

1A 0� 0
1
3

1A5 0� 0
1
3

1A 0� 1
1
2

1A 0� 2
1
1

1A 0� 3
1
0

1A 0� 0
1
4

1ATime node (1,0)Step CPU 0 CPU 1 CPU 2 CPU 3 group5 0� 4
0
0

1A 0� 1
0
4

1A
exe
ution poli
y. On
e again, it
an be dedu
ed that a group (jG

1 , j
G
2 , j

G
3) ∈ JG will be exe
utedin SMP node (jG

1 , j
G
2) during the time step t(~jG) = jG

3 = jS
1 + jS

2 + jS
3 . Therefore, the lineartime s
heduling ve
tor for this example is ΠG = (0, 0, 1).

108 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
Sj1

Sj3

Sj2

node(0,0) node(1,0)

node(0,1)

0

1 2

3

4

5

6

7

8 9

10

4

5 6

7

8

9

10

11

12 13

14

1

2

3

0
1

1

2
3

2
3

4

5

6

7

8

9

10Figure 4.15: Example 4.5 - 4 × 1 CPUs per SMP node - Non-overlapping exe
ution4.4.4 Optimal sele
tion of mksConsidering the minimization of the makespanLet us
onsider (as in Example 4.3) a re
tangular tile spa
e JS : ∀jS ∈ JS it holds 0 ≤ jS
i ≤ uS

i ,
0 ≤ i ≤ n. We apply grouping transformation, a

ording to formula (4.5). Similarly to formula(4.3), it
an be proven that the makespan of the exe
ution will be

℘
overlap =

n∑

k=1

wS
k +

∑

k 6=i

⌈
wS

k

mk
⌉ − 2n+ 2 (4.6)where ws

i = us
i + 1, i = 1, . . . , n is the width of the tile spa
e along dimension i.In order to minimize the total
ompletion time, we should apparently
hoose the i-th dimen-sion, along whi
h we allo
ate the tiles to the same CPU, so that it holds wS

i ≥ wS
k ,∀k = 1, . . . , n,as wS

i is the only dimension of JS whi
h is involved in (4.6) only on
e.After the sele
tion of the i-th dimension, the
eiling fun
tions involved in the expression(4.6)
an be eliminated as follows:
n∑

k=1

wS
k +

∑

k 6=i

wS
k

mk
− 2n+ 2 ≤ ℘

overlap <

n∑

k=1

wS
k +

∑

k 6=i

wS
k

mk
− n+ 1Thus, we
an assert that the
ompletion time of the algorithm is approximately minimum when

4.4 Determining P G a

ording to the number of CPUs within an SMP node 109
Table 4.6: Example 4.5 - 4 × 1 CPUs per SMP node - Non-overlapping exe
utionTime node (0,0)Step CPU 0 CPU 1 CPU 2 CPU 3 group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
0
2

1A 0� 1
0
1

1A 0� 2
0
0

1A 0� 0
0
2

1A3 0� 0
0
3

1A 0� 1
0
2

1A 0� 2
0
1

1A 0� 3
0
0

1A 0� 0
0
3

1A4 0� 0
0
4

1A 0� 1
0
3

1A 0� 2
0
2

1A 0� 3
0
1

1A 0� 0
0
4

1A5 0� 0
0
5

1A 0� 1
0
4

1A 0� 2
0
3

1A 0� 3
0
2

1A 0� 0
0
5

1ATime node (0,1)Step CPU 0 CPU 1 CPU 2 CPU 3 group1 0� 0
1
0

1A 0� 0
1
1

1A2 0� 0
1
1

1A 0� 1
1
0

1A 0� 0
1
2

1A3 0� 0
1
2

1A 0� 1
1
1

1A 0� 2
1
0

1A 0� 0
1
3

1A4 0� 0
1
3

1A 0� 1
1
2

1A 0� 2
1
1

1A 0� 3
1
0

1A 0� 0
1
4

1ATime node (1,0)Step CPU 0 CPU 1 CPU 2 CPU 3 group4 0� 4
0
0

1A 0� 1
0
4

1Athe expression ∑
k 6=i

wS
k

mk
is minimized. A

ording to Lemma C.3, this
ondition is valid when

mk = wS
k

(
m

wS
1 . . . w

S
i−1w

S
i+1 . . . w

S
n

) 1
n−1

, k = 1, . . . , n, k 6= i (4.7)Of
ourse, it is not always feasible be
ause the numbers mi should be natural. But it alwaysapplies an approximate
riterion for the sele
tion of parameters mk. Intuitively, it means thatparameters mk should be
hosen so that ratios wS
k

mk
are as
lose to ea
h other as possible.Example 4.7: Let us
onsider a
luster of SMP nodes with m = 4 CPUs ea
h and a 3-dimensional spa
e JS with size 20 × 100 × 20. It means that wS

1 = 20, wS
2 = 100, wS

3 = 20.

110 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)

S
j
1

S
j
2

S
j
3
 node(0,0)
 node(1,0)
 node(2,0)

node(0,1)
 node(1,1)

Figure 4.16: Example 4.6 - 2 × 2 CPUs per SMP node.Neighboring tiles depi
ted using dots of the same
olor are assigned to the same SMP node.Then, a

ording to our previous analysis, the best
hoi
e will be: i = 2, m1 = 20
(

4
20×20

) 1
2

= 2,
m3 = m

m1
= 2. If we apply these values in expression (4.6), we get that the number of stepsrequired for the
ompletion of the exe
ution will be ℘

overlap = 156. In
ontrast, if we
hose
m1 = 4, m3 = 1, then the expression (4.6) would get the value ℘

overlap = 161 > 156.If the size of JS is 20 × 120 × 150 (wS
1 = 20, wS

2 = 120, wS
3 = 150), then, a

ording toour previous analysis, the best
hoi
e will be: i = 3, m1 = 20

(
4

20×120

) 1
2

= 0.816. The
losestnatural number whi
h divides m = 4 is m1 = 1. Thus m2 = m
m1

= 4. If we apply these values inthe expression (4.6), we get that the number of steps required for the
ompletion of the exe
utionwill be ℘
overlap = 336. In
ontrast, if we
hose m1 = m2 = 2, then the expression (4.6) wouldget the value ℘

overlap = 356 > 336.When the non-overlapping exe
ution poli
y is followed, as dedu
ed from formula (4.4), the

4.4 Determining P G a

ording to the number of CPUs within an SMP node 111
S
j
1

S
j
2

S
j
3

S
j
1

S
j
2

S
j
3

S
j
1

S
j
2

S
j
3
Figure 4.17: Example 4.6 - 2 × 2 CPUs per SMP node.Ea
h sub-�gure depi
ts the tiles assigned to an SMP node. Tiles a
ross a grey plane, are exe
utedsimultaneously by di�erent CPUs of the SMP node.sele
tion of parameters mk does no matter for the
omputation of the makespan.Considering the minimization of the
ommuni
ation overheadAs one
an easily observe in Example 4.7, when the overlapping exe
ution poli
y is followed,the signi�
an
e of the sele
tion of parameters mk, as it has just been des
ribed, is less when themaximum dimension wS
i is mu
h longer than dimensions wS

1 , . . . , w
S
i−1, w

S
i+1, . . . , w

S
n . So, it maybe preferable to
hoose the values of parameters mk taking into
onsideration the minimizationof the
ommuni
ation requirements among the SMP nodes. This need is apparent when
om-muni
ation is not overlapped with
omputations. In that
ase, the less the
ommuni
ation loadis, the faster the exe
ution is
ompleted.

1j

2l

1l

2j

Figure 4.18: Communi
ation load of a tile.Communi
ation load along dimension x is de�ned to be the number of dependen
e ve
tors, whi
h
ross the respe
tive tile boundary line (or, generally, for n dimensions, hyperplane).

112 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
Table 4.7: Example 4.6 - 2 × 2 CPUs per SMP node - Overlapping exe
utionUnlike Examples 4.4 and 4.5, in this example we should label CPUs of an SMP node using bothdimensions of the 2 × 2 virtual mesh.Time node (0,0)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 0
1
0

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
0
2

1A 0� 0
1
1

1A 0� 1
0
1

1A 0� 1
1
0

1A 0� 0
0
2

1A3 0� 0
0
3

1A 0� 0
1
2

1A 0� 1
0
2

1A 0� 1
1
1

1A 0� 0
0
3

1A4 0� 0
0
4

1A 0� 0
1
3

1A 0� 1
0
3

1A 0� 1
1
2

1A 0� 0
0
4

1A5 0� 0
0
5

1A 0� 0
1
4

1A 0� 1
0
4

1A 0� 1
1
3

1A 0� 0
0
5

1ATime node (0,1)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group3 0� 0
2
0

1A 0� 0
1
2

1A4 0� 0
2
1

1A 0� 0
3
0

1A 0� 1
2
0

1A 0� 0
1
3

1A5 0� 0
2
2

1A 0� 0
3
1

1A 0� 1
2
1

1A 0� 1
3
0

1A 0� 0
1
4

1ATime node (1,0)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group3 0� 2
0
0

1A 0� 1
0
2

1A4 0� 2
0
1

1A 0� 2
1
0

1A 0� 3
0
0

1A 0� 1
0
3

1A5 0� 2
0
2

1A 0� 2
1
1

1A 0� 3
0
1

1A 0� 3
1
0

1A 0� 1
0
4

1ALet us represent with lk the
ommuni
ation load of a tile along the k-th dimension, asindi
ated in Figure 4.18. If we group together m1m2 tiles, then the
ommuni
ation loads amongthe SMP nodes will be l1m2 = m
m1
l1 and l2m1 = m

m2
l2, as indi
ated in Figure 4.19. Similarly,if we group together m1 · · ·mi−1mi+1 · · ·mn tiles, then the
ommuni
ation loads among thenodes of the
luster will be m

mk
lk. Thus the total
ommuni
ation load of a group will be ltotal =

m
(

l1
m1

+ · · · + li−1

mi−1
+ li+1

mi+1
+ · · · + ln

mn

). A

ording to Lemma C.3, it is minimized when mk =

lk

(
m

l1···li−1li+1···ln

) 1
n−1 , k = 1, . . . , n, k 6= i. Of
ourse, as numbers mk should be natural, this
riterion is also approximative.

4.4 Determining P G a

ording to the number of CPUs within an SMP node 113
Table 4.8: Example 4.6 - 2 × 2 CPUs per SMP node - Non-overlapping exe
utionTime node (0,0)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group0 0� 0

0
0

1A 0� 0
0
0

1A1 0� 0
0
1

1A 0� 0
1
0

1A 0� 1
0
0

1A 0� 0
0
1

1A2 0� 0
0
2

1A 0� 0
1
1

1A 0� 1
0
1

1A 0� 1
1
0

1A 0� 0
0
2

1A3 0� 0
0
3

1A 0� 0
1
2

1A 0� 1
0
2

1A 0� 1
1
1

1A 0� 0
0
3

1A4 0� 0
0
4

1A 0� 0
1
3

1A 0� 1
0
3

1A 0� 1
1
2

1A 0� 0
0
4

1A5 0� 0
0
5

1A 0� 0
1
4

1A 0� 1
0
4

1A 0� 1
1
3

1A 0� 0
0
5

1ATime node (0,1)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group2 0� 0
2
0

1A 0� 0
1
2

1A3 0� 0
2
1

1A 0� 0
3
0

1A 0� 1
2
0

1A 0� 0
1
3

1A4 0� 0
2
2

1A 0� 0
3
1

1A 0� 1
2
1

1A 0� 1
3
0

1A 0� 0
1
4

1ATime node (1,0)Step CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) group2 0� 2
0
0

1A 0� 1
0
2

1A3 0� 2
0
1

1A 0� 2
1
0

1A 0� 3
0
0

1A 0� 1
0
3

1A4 0� 2
0
2

1A 0� 2
1
1

1A 0� 3
0
1

1A 0� 3
1
0

1A 0� 1
0
4

1A
In the rest of this
hapter, we shall theoreti
ally and experimentally
ompare the proposedmethods with ea
h other. Although our above theoreti
al results
an be applied to any
onvextile spa
e, as explained in §2.2, we shall go on using only re
tangular tile spa
es, as in ourprevious examples. We
onsider that this simpli�
ation is
onvenient for
learly expressingsome ideas and it does not
onstrain any of the advantages or disadvantages of the proposedmethods.

114 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)

Sj1

Sj2
21lm

12lm

Figure 4.19: Communi
ation load of a group.Communi
ation load along dimension x is de�ned to be the produ
t of the
ommuni
ation loadof a tile along dimension x, and the number of tiles, whi
h tou
h the respe
tive group boundaryline (or, generally, for n dimensions, hyperplane).4.5 Theoreti
al ComparisonIn this se
tion we shall
ompare verti
al grouping, whi
h is indi
ated in Figure 4.3, with theproposed s
heme of hyperplane grouping, whi
h is shown in Figures 4.4 and 4.8, in the
ase ofa 2-dimensional algorithm and a
luster of SMPs with 2 CPUs ea
h.
�� ���� � �

� �� �� � �	
 � 	�� 	
 �
�� �� �� �� ��

Figure 4.20: In order to exe
ute at the same time tiles grouped together by a verti
algrouping s
heme, we should further divide them into sub-tiles and exe
ute some of them inparallel, a

ording to an intra-tile hyperplane s
heduling.As we have already mentioned, verti
al grouping
annot exploit the
omputational powerof both CPUs of our SMPs unless we split ea
h tile into smaller subtiles and
ompute someof them in parallel, as shown in Figure 4.20. Let us assume that a CPU needs time α for the
omputation of a tile with dimensions x, y (Figure 4.20a). Consequently, it will need time α
Nfor the
omputation of a respe
tive subtile with dimensions x

N , y (Figure 4.20
). The subtileswhi
h are
reated
an be
omputed by 2 CPUs in N + 1
omputational steps, interleaved with
N syn
hronization steps, following an optimal linear time s
hedule (1, 1) as in Figure 4.20
. Ifthe average time
onsumed for the syn
hronization of 2 CPUs of an SMP node is tsynch in, then

4.5 Theoreti
al Comparison 115
the total time required for the
omputation of a pair of initial tiles is

β = α
N + 1

N
+Ntsynch in. (4.8)

β is minimized when
N =

√
α

tsynch in
. (4.9)Therefore, the minimum value of β is βmin = α+ 2
√
αtsynch in > α.If we
onsider an iteration spa
e of size X × Y , tiled with re
tangular tiles of size xy, (forexample in Figures 4.3, 4.4 we have X

x = 10, Y
y = 6), then we have the following options:1. Following the non-overlapping s
heme (whi
h
an be implemented using blo
king
alls)in
ombination with verti
al grouping, the number of time steps required for the
omple-tion of the exe
ution is ℘ = X

x + Y
2y − 1. The minimum duration of a time step (a

ordingto formula (2.10)) is βmin +tcomm, where tcomm is the time required for the
ommuni
ationbetween two SMP nodes. Thus, the total time required is

Tblocking,vertical = ℘(βmin + tcomm) ≃ (
X

x
+
Y

2y
)(βmin + tcomm)2. Following the overlapping s
heme (whi
h
an be implemented using non-blo
king
alls) in
ombination with verti
al grouping, the number of time steps required for the
ompletionof the exe
ution is ℘= X

x + Y
y − 2. A

ording to formula (2.11), if we set tcomp = βmin,the minimum duration of a time step is tstart dma +max(βmin, tcomm dma)+ tsynchro. Thus,the total time required is

Tnon−blocking,vertical = ℘(tstart dma +max(βmin, tcomm dma) + tsynchro) ≃

≃ (X
x + Y

y)(tstart dma +max(βmin, tcomm dma) + tsynchro)If βmin ≥ tcomm dma, then
Tnon−blocking,vertical ≃ (

X

x
+
Y

y
)(tstart dma + βmin + tsynchro)3. Following the overlapping s
heme in
ombination with hyperplane grouping, the num-ber of time steps required for the
ompletion of the exe
ution is ℘= X

x + 3Y
2y − 2. A
-
ording to formula (2.11), if we set tcomp = α, the minimum duration of a time step is

116 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
tstart dma +max(α, tcomm dma) + tsynchro. Thus, the total time required is

Tnon−blocking,hyperplane = ℘(tstart dma +max(α, tcomm dma) + tsynchro) ≃

≃ (X
x + 3Y

2y)(tstart dma +max(α, tcomm dma) + tsynchro)If α ≥ tcomm dma, then
Tnon−blocking,hyperplane ≃ (

X

x
+

3Y

2y
)(tstart dma + α+ tsynchro)In most real problems it holds that Y/y

X/x = λ ≪ 1. Therefore, in
ase that βmin ≥

tcomm, the overlapping s
heme in
ombination with verti
al grouping is more eÆ
ient thanthe non-overlapping s
heme, when tcomm dma > (tstart dma + βmin + tsynchro)
Y
2y

X
x

+ Y
2y

⇔ tcomm >

λ
2 (tstart dma + βmin + tsynchro). In addition, the overlapping s
heme, in
ombination with hyper-plane grouping, is more eÆ
ient than the overlapping s
heme, in
ombination with verti
al group-ing, when (X

x + 3Y
2y)(tstart dma+α+tsynchro) < (X

x + Y
y)(tstart dma+α+2

√
αtsynch in+tsynchro). Ifwe
onsider tstart dma + tsynchro ≪ α, then, we get 2

√
tsynch in

α > λ/2
1+λ ≃ λ

2 ⇒ tsynch in > α
(

λ
4

)2.This is due to the fa
t that, using verti
al grouping, the pipeline �lling is faster, while, usinghyperplane grouping, the pipeline throughput is faster. So, hyperplane grouping is preferablewhen the mapping dimension of the tile spa
e is long enough in
omparison to the rest dimen-sions. However, in any
ase, the hyperplane grouping has the advantage that it needs no extratiling inside ea
h tile in order to exploit the
omputational for
e of the CPUs.Consequently, whi
h
ommuni
ation and grouping poli
y is optimal, depends on the hard-ware
hara
teristi
s. One should estimate the time parameters involved in the model (
ompu-tation, transfer initialization overhead, a
tual transfer overhead) and determine whi
h s
hemeis going to give the peak performan
e. In general, the purpose of the overlapping s
heme, in
ombination with hyperplane grouping, is exploiting all modern ar
hite
tural
hara
teristi
s ofNICs, su
h as DMA, RDMA, Zero Copy, or even NICs with embedded pro
essors. Thus, thiss
heme will be optimal when these
hara
teristi
s are a
tually available.4.6 Experimental Veri�
ation4.6.1 Experimental platform and algorithmIn [STK02℄, the pipelined s
hedule proposed in [GSK01℄ was applied, using a
luster of singleCPU nodes with PCI-SCI NICs. In this thesis, as in [AST+05℄, [ASTK02a℄, [ASTK02b℄, inorder to evaluate the proposed methods, we ran our experiments on a Linux SMP
luster with 8identi
al nodes. Ea
h node had 128MB of RAM and 2 Pentium III 800 MHz CPUs. The
lusternodes were inter
onne
ted with an SCI ring, using SCI Dolphin's PCI-SCI D330
ards. SCI

4.6 Experimental Veri�
ation 117
NICs support shared memory programming, either through PIO (Programmed-IO) messaging,or through DMA. We are using their kernel-level DMA support for messaging. Invoking kernelsystem
alls,
auses extra CPU
y
les overhead. However, we
an avoid extra
opying from userspa
e to kernel spa
e (physi
al memory) when using DMA. We allo
ate user level pages, whi
h
orrespond to physi
ally
ontiguous pre-reserved memory regions, for DMA
ommuni
ations.Our test appli
ation was the following
ode:for(i=1; i<=X; i++)for(j=1; j<=Y; j++)for(k=1; k<=Z; k++)A[i℄[j℄[k℄=fun
(A[i-1℄[j℄[k℄,A[i℄[j-1℄[k℄,A[i℄[j℄[k-1℄);where A is an array of X × Y × Z
oats and X = Y << Z. Without la
k of generality, wesele
t as a tile a re
tangle with ij, ik and jk sides. The dimension k is the largest one, so alltiles along k-axis are mapped onto the same pro
essor, as proposed in §4.4.4. Ea
h tile has i, jdimensions equal to x and the tile's \height" along k-axis equal to z. There are X

x tiles alongdimensions i and j and Z
z tiles along dimension k. Tile's volume is equal to g = x2z, and sin
ethe number of available pro
essors is initially known, the only unknown parameter is z.We applied both verti
al and hyperplane grouping, using both blo
king and non-blo
king
ommuni
ation primitives. Sin
e both verti
al and hyperplane grouping
an be
ombined withboth overlapping and non-overlapping
ommuni
ation, we experimented with all four
ombina-tions. For ea
h exemplary iteration spa
e and ea
h possible tile height, we
al
ulated the totalexe
ution time for the above s
hemes. In order to implement these s
hemes, we used LinuxPOSIX threads with semaphores for the syn
hronization among the pro
essors of an SMP nodeand the SISCI driver and libraries for the
ommuni
ation among the SMP nodes.4.6.2 Tuning ParametersFirst of all, as far as the implementation of verti
al grouping is
on
erned, we experimentallyveri�ed formula (4.9), in order to
al
ulate the optimal exe
ution time for a
ouple of tiles byan SMP node. We assigned the
omputation of two tiles to the two pro
essors of an SMP nodeand measured their exe
ution time in respe
t to the number of subtiles into whi
h ea
h tile was
ut, in order not to violate the iteration dependen
es. The experimental results, along with thetheoreti
ally expe
ted
urve, are plotted in Figure 4.21. The theoreti
al plot was
al
ulated usingthe formula (4.8) with α ≃ 69msec and tsynch in ≃ 11µsec. These values were experimentallymeasured by running a simple
ode fragment thousands of times and
al
ulating the averageexe
ution time. If we �nd the Nbest,theoretical, that is the point N where the theoreti
al minimumis a
hieved and for thisN we �nd the
orresponding experimental overall time, then the di�eren
ebetween this value and the experimental minimum is less than 0, 15%. This is
learly shown inFigure 4.22, whi
h has zoomed in the minimum of the diagram of Figure 4.21. So we
an safelyuse Nbest,theoretical as Nbest.

118 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
This
an be simply justi�ed as follows: If we
onsider a shift δN of N , then the shift of

β will be δβ = −α δN
N(N+δN) + tsynch inδN . If, in this formula, we set N = Nbest,theoretical weget that: δβ

βmin
=

(δN
Nbest,theoretical

)2

1+ δN
Nbest,theoretical

1
2+
q

α
tsynch in

. Therefore, the less the parameter tsynch in is in
omparison to α, the less important the exa
t sele
tion of N is. Intuitively, in the extreme
ase,where tsynch in is 0, we
ould always a
hieve the same results, no matter how �ne grained theparallelism is (i.e. for very large N 's). However, tsynch in is always
onsiderable and
annot beignored for real life SMP ar
hite
tures.

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0 50 100 150 200 250 300 350 400 450 500

T
ile

 E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of pieces

practical
theoretical

Figure 4.21: Verti
al grouping - Tile exe
ution time in respe
t to the number of sli
es atile is
ut

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0 50 100 150 200 250

T
ile

 E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of pieces

Practical Minimun:(58, 0.0693)

Theoretical Minimun:(79, 0.0705)

(79, 0.0694)

practical
theoretical

Figure 4.22: Verti
al grouping - Zoom in the minimum area of the plot of Figure 4.214.6.3 Experimental ResultsOn
e verti
al grouping had been implemented and approximated with a theoreti
al formula, weimplemented both blo
king and non-blo
king
ommuni
ation s
hemes. As far as the blo
king

4.6 Experimental Veri�
ation 119
Table 4.9: Implementation of the non-overlapping s
hemeThread 0: Thread 1:forea
h group assigned to node(i,j) do{ forea
h group assigned to node(i,j) do{re
eive from node(i-1,j)re
eive from node(i,j-1) re
eive from node(i,j-1)
ompute tile(i,j,k,CPU0)
ompute tile(i,j,k,CPU1)send to node(i+1,j)send to node(i,j+1) send to node(i,j+1)semaphore post(sem s1) semaphore post(sem s2)semaphore wait(sem s2) semaphore wait(sem s1)

} }Table 4.10: Implementation of the overlapping s
hemeThread 0: Thread 1: Explanationforea
h group assigned to node(i,j) do{ forea
h group assigned to node(i,j) do{trigger interrupt to node(i-1,j) Inform \previous" nodes:trigger interrupt to node(i,j-1) trigger interrupt to node(i,j-1) \I am ready to a

ept data"wait interrupt from node(i+1,j) Wait until \next" nodeswait interrupt from node(i,j+1) wait interrupt from node(i,j+1) are ready to a

ept datasend dma(node(i+1,j),data) Initialization of DMA transfersend dma(node(i,j+1),data) send dma(node(i,j+1),data) to neighboring nodes
ompute tile(i,j,k,CPU0)
ompute tile(i,j,k,CPU1)wait dma() Wait for DMA to
ompletewait dma() wait dma()trigger interrupt to node(i+1,j) Inform \next" nodes:trigger interrupt to node(i,j+1) trigger interrupt to node(i,j+1) \Your data has arrived"wait interrupt from node(i-1,j) Wait until \previous" nodeswait interrupt from node(i,j-1) wait interrupt from node(i,j-1) have �nished sending datasemaphore post(sem s1) semaphore post(sem s2)semaphore wait(sem s2) semaphore wait(sem s1) Implementation of a barrier
} }Table 4.11: Implementation of the verti
al vs. hyperplane grouping

Vertical grouping
ompute tile(i,j,k,CPU0):
ompute tile(i,j,k,CPU1):forea
h subtile of this tile do{ forea
h subtile of this tile do{
ompute ea
h iteration of this subtilesemaphore post(sem1) semaphore post(sem2)semaphore wait(sem2) semaphore wait(sem1)
ompute ea
h iteration of this subtile
} }

Hyperplane grouping
ompute tile(i,j,k,CPU0):
ompute tile(i,j,k,CPU1):
ompute ea
h iteration of this tile
ompute ea
h iteration of this tile
ommuni
ation s
heme is
on
erned, it was implemented using the pseudo-
ode of Table 4.9. Onthe other hand, the non-blo
king s
heme was implemented using the pseudo-
ode of Table 4.10.Noti
e that during ea
h time step every SMP node in the ij plane with
oordinates (i, j) re
eivesfrom neighboring nodes (i− 1, j) and (i, j − 1),
omputes and sends to nodes (i+ 1, j),(i, j + 1)(Figure 4.23). Sin
e the send dma()
all is not blo
king, the
omputation of the tiles will beperformed
on
urrently with the transferring of data among the SMP nodes. After the exe
utionof wait dma(), it is assured that both
omputation and
ommuni
ation are already
ompleted.The implementation of verti
al and hyperplane grouping was a
hieved by a proper pro
e-dure
ompute tile(i, j, k, CPUx). In order to implement verti
al grouping, we used thepseudo
ode of Table 4.11. The number of subtiles inside a tile was sele
ted a

ording to formula(4.9). Noti
e that, the implementation of hyperplane grouping was mu
h simpler, as shown in

120 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)
Table 4.11.

i

j

(i,j-1)
 (i,j-1)

(i,j+1)
 (i,j+1)

(i+1,j)
(i-1,j)

CPU 0
 CPU 1

SMP node(
i,j
)
Figure 4.23: Dire
tions and sour
e/destination nodes of message ex
hanges for an SMPnode with 2 CPUs

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 16x16x1024k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.24: Experimental Results: 16 × 16 × 1024k iteration spa
eThe problem was solved using various values of X = Y and Z. For ea
h s
hedule, we areinterested in the overall minimum exe
ution time a
hieved at an optimally sele
ted tile height(see [GSK01℄, [STK02℄, [HS98℄). The experimental results, shown in Figures 4.24-4.28, illustratethat, in every
ase, non-blo
king
ommuni
ation is preferable to blo
king
ommuni
ation andhyperplane grouping is preferable to verti
al grouping. The lowest minimum is
learly a
hievedwhen using hyperplane grouping, in
ombination with non-blo
king
ommuni
ation, in all
ases.As far as hyperplane grouping, in
ombination with non-blo
king
ommuni
ation, is
on
erned,a

ording to our s
heduling theory (formula (4.6)), the number of time steps required for the
ompletion of an experiment is ℘(x, y, z) = 3X
2x + 2Y

y + Z
z − 4. The minimum duration of atime step, as mentioned in §4.5, is (tstart dma + tcomp + tsynchro). Thus, Tnon−blocking,hyperplane =

(3X
2x + 2Y

y + Z
z −4)(tstart dma + tcomp + tsynchro). This formula was used to produ
e the theoreti
al
urves of Figures 4.24-4.26 with values tstart dma + tsynchro = 100µsec and tcomp = x2ztcomp1,where tcomp1 is the exe
ution time of a single iteration and it was measured equal to 39, 6nsec.One
an easily verify from Figures 4.24-4.28 that the graphs of the theoreti
al model are very
lose to the
orresponding experimental graphs, not only at the desired minimum, but along thewhole graph. Thus, the theoreti
al model of s
heduling is strongly veri�ed by the experimental

4.6 Experimental Veri�
ation 121

1.5

2

2.5

3

3.5

4

4.5

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 24x24x1024k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.25: Experimental Results: 24 × 24 × 1024k iteration spa
e

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 32x32x1024k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.26: Experimental Results: 32 × 32 × 1024k iteration spa
eresults.4.6.4 S
alability IssuesThe theoreti
al model presented in this
hapter is general enough, so as not to be di�erentiatedwhen s
aling up the underlying hardware ar
hite
ture. However, in this se
tion, we shall examinesome pra
ti
al problems, whi
h may rise.For example, if we add more SMP nodes, the initial iteration spa
e may be
ut into smallertiles. Thus, the
omputation to
ommuni
ation ratio of ea
h tile tcomp

tcomm dma
may redu
e be
auseof two reasons:1. Less
omputations are assigned to ea
h SMP node, while the amount of data transferrequired is not proportionally redu
ed.2. If the network is saturated (by more SMP nodes trying to send more data in more messages

122 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)

1

1.5

2

2.5

3

3.5

4

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 32x32x512k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.27: Experimental Results: 32 × 32 × 512 iteration spa
e

3

3.5

4

4.5

5

5.5

6

6.5

7

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
(s

ec
)

Tile Height

Total Execution Time
 for 48x48x512k Iteration Space

hyperplane grouping - nonblocking communication
hyperplane grouping - nonblocking communication (theoretical)

hyperplane grouping - blocking communication
vertical grouping - nonblocking communication

vertical grouping - blocking communication

Figure 4.28: Experimental Results: 48 × 48 × 512 iteration spa
eto ea
h other), the in
rease in tcomm dma will be more than relative to the in
rease in thevolume of data transmitted.However,
onsidering an appli
ation with uniform dependen
es, as des
ribed in the algorithmi
model in §2.2, and a torus inter
onne
tion topology, su
h as the one used for our experiments,the network will be never saturated due to the in
rease of SMP nodes. This is be
ause ea
h nodeneed to
ommuni
ate only with its neighbors, thus there are no shared resour
es among di�erent
ommuni
ation
hannels. Thus, only the �rst reason mentioned above
an potentially
ausesome trouble when adding more SMP nodes. But, if it still holds tcomp ≥ tcomm dma, nothingwill
hange in the implementation of our model. In the opposite
ase (tcomp < tcomm dma), theuse of even more nodes will not be eÆ
ient. This problem will not
on
ern our s
heduling, but itwill mean that the
ommuni
ation ar
hite
ture is too slow to exploit all the
omputation powerof the
omputing system. Then, it would be better not to use all the nodes available, as impliedin [HS98℄. However, regarding the speed and eÆ
ien
y of modern inter
onne
tion networks, like

4.6 Experimental Veri�
ation 123
the SCI based inter
onne
t, or the Myrinet inter
onne
t used for the experimentation of thisthesis, it is not possible to en
ounter su
h a situation, espe
ially when
omputing large iterationspa
es of real problems.If we add more CPUs inside ea
h SMP node, we may again
ut the initial iteration spa
e intosmaller tiles. The
omputation to
ommuni
ation ratio of ea
h tile tcomp

tcomm dma
will be de
reasedagain, but only for one reason: Less
omputations are assigned to ea
h CPU. In parti
ular,

tcomp

tcomm dma
will be
onversely proportional to the number of CPUs inside ea
h SMP node. In this
ase, no more data need to be sent through the inter
onne
tion network, sin
e the additionalCPUs
ommuni
ate with ea
h other and with the preexisting CPUs through the shared memoryof the SMP node. However, tsynchro and tstart dma will slightly in
rease, be
ause, �rst, more CPUsneed to initialize their DMA sends and re
eives and, se
ond, these operations
an not be exe
utedat the same time by di�erent threads of the same node (no thread-safe environment { see theimplementation
ode of Table 4.10). This problem
an be solved by assigning all
ommuni
ationoverhead to one thread only and at the same time redu
ing the
omputation overhead of thisthread. Following that te
hnique, CPUs do not remain idle waiting to syn
hronize with ea
hother, sin
e the amount of
omputations assigned to the
ommuni
ating thread may be properly
al
ulated, so as the total
ommuni
ation+
omputation overhead to be evenly distributed amongthe CPUs of ea
h node. The exa
t solution of this problem
on
erns the resear
h
ondu
ted byNikolaos Drosinos in Computing Systems Laboratory.Another aspe
t of s
alability (
on
erning the s
heduling algorithm, not the hardware) ishaving so large iteration spa
es that we
annot
ut them into so few tiles. That is, applyinga tile sele
tion te
hnique, su
h as the ones presented in [BDRR94℄, [Xue97a℄, [Xue00℄, [RR04℄,[KRC99℄, [LRW91℄, [WL91a℄, [PHP03℄, [MHCF98℄, we may get more rows of tiles than the CPUsavailable. Then we should apply a more
ompli
ated te
hnique for assigning tiles to SMP nodesand CPUs as des
ribed in [AKK04℄ and in Chapter 5 of this thesis.

124 Exe
ution of tiles onto
lusters of Symmetri
 Multipro
essors (SMP nodes)

5S
heduling onto a fixed number ofhomogeneous SMP nodes

In this
hapter, we assume that the number of SMP nodes of the available
luster maybe less than the number of SMP nodes needed for the appli
ation of a time s
hedulingprodu
ed by the te
hniques proposed in Chapter 4. Thus, we need to allo
ate morethan one of the tasks produ
ed to ea
h CPU. Whi
h of them will be assigned to thesame CPU? This
hapter answers the above question by proposing �ve alternatives
hedules. Ea
h one seems to be preferable for a spe
i�
 form of tile spa
es or for aset of ar
hite
tural
hara
teristi
s.

126 S
heduling onto a fixed number of homogeneous SMP nodes5.1 Introdu
tionThe s
hedule proposed in Chapter 4 assumes the availability of an unlimited number of SMPnodes or that the tile size has been sele
ted so as the SMP nodes required do not ex
eed theavailable SMP nodes. However, it
annot be always true, sin
e the tile size is often sele
ted soas to minimize
ommuni
ation load [BDRR94℄, [Xue97a℄, [Xue00℄, [RR04℄, or to a
hieve lo
alityin memory data referen
es [KRC99℄, [LRW91℄, [WL91a℄, [PHP03℄, [MHCF98℄. In [AKPT00℄Andronikos et al. have proposed an assignment s
heme onto a �xed number of nodes. It mightbe generalized, for assigning tiles onto a �xed number of nodes, however the
omplexity ofevaluating whi
h tiles should be assigned to whi
h node is too high. Su
h an allo
ation s
hememay be optimal, but it will be impra
ti
al if we want to in
orporate it into an automati

odegeneration tool [GDAK02a℄. On the other hand, automati

ode generation without taking
areof pro
essor allo
ation and s
heduling has
ertain drawba
ks:1. A lot of pre
esses are generated, whi
h are not a
tually needed, sin
e they may outnumberthe pro
essors available. As a result, the pro
esses generation time may unne
essarily be
omparable to the pro
esses exe
ution time, as we found out during our experimentationin [GDAK02a℄.2. In addition, we are obliged to have
on�den
e in the operating system to s
hedule pro
esses.For example, MPI automati
ally allo
ates pro
esses to pro
essors
y
li
ally, whi
h may befar from optimal.3. Finally, in
ase more than one pro
esses are allo
ated to a CPU, optimizing tile sizeand shape a

ording to
a
he lo
ality
riteria [KRC99℄, [LRW91℄, [WL91a℄, [PHP03℄,[MHCF98℄, will not have the desired results, as
ontext-swit
hing frequently between themmight not allow them to build suÆ
ient
ontext in the
a
he.For this purpose, a regular, periodi
 allo
ation s
heme is needed, even if it is suboptimal. In[BDRV99℄, [CDR97℄ Boulet et al. and Calland et al. have theoreti
ally proven the optimalityof a
y
li
 assignment of 2-dimensional tiles onto a �xed number of single CPU nodes. On theother hand, Manjikian and Abdelrahman have presented in [MA01℄ an alternative method fors
heduling tiled iteration spa
es onto a �xed number of SMP nodes, without taking into a

ountthat there is no need for
ommuni
ation among CPUs of the same SMP node, sin
e the datarequired are lo
ated in the node's shared memory.In this
hapter, we propose some methods for s
heduling tiled iteration spa
es onto anexisting
luster with a �xed number of SMP nodes. All following formulas, whi
h refer tothe allo
ation of tiles or groups to the nodes of the
luster or to the
orresponding exe
utionsteps are valid for any
onvex tile spa
e, as de�ned in §2.2. However, when
al
ulating thenumber of time steps required for the
ompletion of the exe
ution (makespan), we
onsider are
tangular tile spa
e, as in formulas (4.3), (4.4), (4.6). We use this simpli�
ation in order

5.2 Cy
li
 assignment to SMPs 127
to point out the basi

on
epts
on
erning ea
h one of the proposed methods, without too
ompli
ated mathemati
al formulas. Anyway, it does not
onstrain any of the advantages ordisadvantages of the methods proposed, apart from those
on
erning load balan
ing. In orderto further simplify the mathemati
al formulas, we assume that the longest dimension of the tilespa
e is the �rst one. Thus, a

ording to §3.3.2, §4.4.4, tiles along the �rst dimension will beassigned to the same pro
essor. This assumption
an be easily
an
elled by simply inter
hangingthe �rst dimension with anyone else.5.2 Cy
li
 assignment to SMPsIn [BDRV99℄, [CDR97℄ the optimality of the
y
li
 assignment of 2-dimensional tiles onto a �xednumber of pro
essors was theoreti
ally proven. However, the
al
ulations in [BDRV99℄, [CDR97℄did not take into a

ount the
ommuni
ation overhead involved. Generalizing this approa
h for
n-dimensional tiles and for
lusters of SMP nodes, we
onsider that the available SMP nodesform a virtual (n−1)-dimensional mesh of p2×· · ·×pn = p SMP nodes. We
y
li
ally assign thegroups to the SMP nodes. That is, we assign group ~jG to the SMP node (jG

2 %p2, . . . , j
G
n %pn),as indi
ated in Figure 5.1.

time scheduling on 2
SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0
CPU1

CPU0
CPU1

CPU0
CPU1

CPU0
CPU1

j1S

j2S

SMP0

SMP1

CPU0
CPU1

CPU0
CPU1

chunk origins
j1S

j2S

allocation of tiles to SMPs assuming
as many nodes as needed

This chunk of tiles will be assigned on
the 2 existing SMPs & executed after
the first chunk execution finishes

Figure 5.1: Cy
li
 assignment to SMP nodes.Groups are
y
li
ally assigned to SMP nodes. Equivalently, tiles are
y
li
ally assigned to CPUs.Tile spa
e areas, whi
h
an �t the existing ar
hite
ture, are named as \
hunks". Chunks of tilesare exe
uted one after the other, in lexi
ographi
 order.
Theorem 5.1 The makespan of
y
li
ally assigning a re
tangular tile spa
e to SMP nodes,

128 S
heduling onto a fixed number of homogeneous SMP nodes
assuming overlapping
ommuni
ation with
omputation is:

℘
cyclic−overlap =

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
+ wS

1

n∏
i=2

⌈
wS

i

mipi
⌉ ≤

≤
n∑

i=2
[(mi + 1)pi] − 2n+ 2 + wS

1

n∏
i=2

⌈
wS

i

mipi
⌉

(5.1)
Proof: Ea
h SMP node will exe
ute ⌈

wS
2

m2p2
⌉ × · · · × ⌈

wS
n

mnpn
⌉ rows of groups. If the rows ofgroups assigned to an SMP node, are exe
uted in lexi
ographi
 order, row (•, jG

2 , . . . , j
G
n) willbe exe
uted in SMP node (jG

2 %p2, . . . , j
G
n %pn) after n∑

i=2

[
⌊

jG
i

pi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

] rows, imposinga laten
y of wS
1 time steps ea
h. Thus, there is a total laten
y of wS

1

n∑
i=2

[
⌊

jG
i

pi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]time steps. In addition, as dedu
ed from Figure 5.1, the lo
ation of a group, relatively to the
orresponding
hunk origin, is (jG
1

′
, jG

2 %p2, . . . , j
G
n %pn), where jG

1
′
= jS

1 +
n∑

i=2

jS
i %mipi.Therefore, if the underlying ar
hite
ture allows for
on
urrent exe
ution of
omputationsand
ommuni
ation, following the overlapping exe
ution s
heme, group ~jG will be
omputedduring the time step

t(~jG) = jG
1

′
+

n∑

i=2

jG
i %pi + wS

1

n∑

i=2

[
⌊
jG
i

pi

⌋

n∏

k=i+1

⌈
wS

k

mkpk

⌉

]
. (5.2)Thus, the number of time steps required for the
ompletion of the exe
ution will be

℘
cyclic−overlap = max t(~jG) − min t(~jG) + 1 =

(C.3)
= uS

1 +
n∑

i=2

[
uS

i %mipi + ⌊
uS

i

mi
⌋%pi

]
+ wS

1

n∑
i=2

[
⌊

uS
i

mipi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
+ 1 =

(C.4)
=

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
+ wS

1 + wS
1

n∑
i=2

[
(⌈

wS
i

mipi
⌉ − 1)

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
=

(C.7)
=

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
+ wS

1

n∏
i=2

⌈
wS

i

mipi
⌉

⊣The �rst term of the right-hand part in formula (5.1) represents the time required for �llingthe pipeline (that is, the initial idle time needed for the last pro
essor to start
omputing), whilethe se
ond term
orresponds to the time ea
h pro
essor is busy exe
uting
al
ulations.Lemma 5.1 This s
hedule is valid i�
wS

1

n∏

k=l+1

⌈
wS

k

mkpk
⌉ ≥ (ml + 1)pl,

∀l = 2, . . . , n su
h that wS
l > mlpl.

5.2 Cy
li
 assignment to SMPs 129
Proof: In order to prove the validity of this s
hedule, it suÆ
es to prove that the data neededfor the
omputation of a tile are available during the desired time step. If the ne
essary dataare available for the
omputation of the
hunk origins, they will be also available for everyinner tile. We assume that tiles are big enough to in
lude all dependen
e ve
tors. Thus,ea
h tile depends only on neighboring tiles. A
hunk origin has
oordinates of the form:
~jS

origin = (0, x2m2p2, . . . , xnmnpn), where xi ∈ N (i = 2, . . . , n). Thus, it will be exe
uted inthe SMP node (0, . . . , 0) during the time step torigin = wS
1

n∑
i=2

[
xi

n∏
k=i+1

⌈
wS

k

mkpk
⌉

] (see formula(5.2)). If xl ≥ 1 (whi
h presupposes wS
l > mlpl), this
hunk origin will be dependent from tile

~jS
dependence = (0, x2m2p2, . . . , xl−1ml−1pl−1, xlmlpl − 1, xl+1ml+1pl+1, . . . , xnmnpn), whi
hwill be exe
uted in the SMP node (0, . . . , 0, pl − 1, 0, . . . , 0) during the time step tdependence =

(ml+1)pl−2+wS
1 [

n∑
i=2

[xi

n∏
k=i+1

⌈
wS

k

mkpk
⌉]−

n∏
k=l+1

⌈
wS

k

mkpk
⌉]. Sin
e these two tiles will be exe
uted indi�erent SMP nodes, for the ne
essary data to be available, it must hold torigin−tdependence ≥

2 ⇔ wS
1

n∏
k=l+1

⌈
wS

k

mkpk
⌉ ≥ (ml + 1)pl. This inequality should be valid ∀l = 2, . . . , n su
h that

wS
l > mlpl. ⊣If the
ondition, de�ned by Lemma 5.1, is not valid, then there is not an a
tual shortage ofpro
essors along dimension l. Thus, we
an s
hedule along this dimension as if there were asmany pro
essors as needed. For example, see the di�eren
e between Figures 5.2 and 5.3.

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

equivalent

schedulings

P

t
scheduling on a fixed number of processors

empty pipeline waiting for the necessary

data to become available

t

P

scheduling on an unlimited number of processors

Figure 5.2: Cy
li
 s
heduling when there is not a
tual la
k of pro
essors.When there are only 2 SMP nodes available, the time steps, when ea
h tile will be
omputed,do not
hange at all.If we should do with a
onventional
ommuni
ation ar
hite
ture as node inter
onne
t (i.e.without NIC support for relieving the CPU from the
ommuni
ation burden):

130 S
heduling onto a fixed number of homogeneous SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

t

P

scheduling on a fixed number of processors

t

P

scheduling on an unlimited number of

processors

Figure 5.3: Cy
li
 s
heduling when there is la
k of pro
essors.The
omputation of the se
ond
hunk of tiles starts at time step t = 8, instead of t = 6, a

ordingto formula (5.2).
Theorem 5.2 The makespan of
y
li
ally assigning a re
tangular tile spa
e to SMP nodes,following the non-overlapping exe
ution s
heme, is:

℘
cyclic−nonoverlap =

n∑
i=2

[
(wS

i − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

mipi
⌉ ≤

≤
n∑

i=2
mipi − n+ 1 + wS

1

n∏
i=2

⌈
wS

i

mipi
⌉

(5.3)
Proof: As in the proof of theorem 5.1, the laten
y before the
omputation of a group
onsistsof the laten
y imposed by lexi
ographi
ally previous rows assigned to the same pro
essor, plusthe laten
y imposed by previous groups of the same row. Consequently, group ~jG will be
omputed during the time step

t(~jG) = jG
1

′
+ wS

1

n∑

i=2

[
⌊
jG
i

pi

⌋

n∏

k=i+1

⌈
wS

k

mkpk

⌉

] (5.4)

5.3 Mirror assignment to SMPs 131
Thus, the makespan of the exe
ution will be

℘
cyclic−nonoverlap = max t(~jG) − min t(~jG) + 1 =

(C.3)
= uS

1 +
n∑

i=2

[
uS

i %mipi

]
+ wS

1

n∑
i=2

[
⌊

uS
i

mipi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
+ 1 =

(C.4)
=

n∑
i=2

[
(wS

i − 1)%mipi

]
+ wS

1 + wS
1

n∑
i=2

[
(⌈

wS
i

mipi
⌉ − 1)

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
=

(C.7)
=

n∑
i=2

[
(wS

i − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

mipi
⌉

⊣Lemma 5.2 The s
hedule of Theorem 5.2 is always valid, assuming wS
1 ≥ wS

i , i = 2, . . . , n.Proof: As in the proof of Lemma 5.1, in order for this s
hedule to be valid, the dataneeded for the
omputation of a tile should be available during the
orresponding time step.A
hunk origin ~jS
origin = (0, x2m2p2, . . . , xnmnpn) (xi ∈ N (i = 2, . . . , n)), will be exe
utedduring the time step torigin = wS

1

n∑
i=2

[
xi

n∏
k=i+1

⌈
wS

k

mkpk
⌉

] (see formula (5.4)). If xl ≥ 1 (whi
hpresupposes wS
l > mlpl), this
hunk origin will be dependent from tile ~jS

dependence = (0,

x2m2p2, . . . , xl−1ml−1pl−1, xlmlpl − 1, xl+1ml+1pl+1, . . . , xnmnpn), whi
h will be exe
utedduring the time step tdependence = mlpl − 1 + wS
1 [

n∑
i=2

[xi

n∏
k=i+1

⌈
wS

k

mkpk
⌉] −

n∏
k=l+1

⌈
wS

k

mkpk
⌉]. Sin
e,in the non-overlapping exe
ution s
heme, the data are transferred among SMPs during thetime step of their
omputation, for the ne
essary data to be available, it must hold torigin −

tdependence ≥ 1 ⇔ wS
1

n∏
k=l+1

⌈
wS

k

mkpk
⌉ ≥ mlpl. This inequality is valid ∀l = 2, . . . , n su
h that

wS
l > mlpl, be
ause: wS

1

n∏
k=l+1

⌈
wS

k

mkpk
⌉ ≥ wS

1 ≥ wS
l > mlpl. ⊣5.3 Mirror assignment to SMPsLet us
onsider another s
hedule, if we assign the tiles to SMP nodes as indi
ated in Figure 5.4.That is, we assign group ~jG to the SMP node

(
jG
2 %p2 if even(jG

2 /p2)
(p2 − 1) − jG

2 %p2 if odd(jG
2 /p2)

, . . . ,
jG
n %pn if even(jG

n /pn)
(pn − 1) − jG

n %pn if odd(jG
n /pn)

).This s
hedule has the advantage that there is no need for data transfer along the boundaries of
hunks of tiles, thus less time is wasted for
ommuni
ation.Theorem 5.3 When following the mirror assignment s
hedule, in
ombination with the over-

132 S
heduling onto a fixed number of homogeneous SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

t

P

scheduling on a fixed number of processors

following the mirror mapping scheme

t

P

scheduling on an unlimited number of

processors

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

idle time steps for some of the processors
Figure 5.4: Mirror assignment to SMP nodes.As in the
y
li
 assignment s
heme, the tile spa
e is divided into
hunks, whi
h �t the existingpro
essing ar
hite
ture. The di�eren
e is that tiles along the same
hunk boundary are assignedto the same SMP node. Thus, there is no need for
ommuni
ation a
ross
hunk boundaries.
lapping exe
ution s
heme, the makespan is:

℘
mirror−overlap =

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
−

n∑
i=2

[(mi + 1)pi] + 2n− 2+

+

[
wS

1 +
n∑

i=2
[(mi + 1)pi] − 2n+ 2

]
n∏

i=2
⌈

wS
i

mipi
⌉ ≤

≤

[
wS

1 +
n∑

i=2
[(mi + 1)pi] − 2n+ 2

]
n∏

i=2
⌈

wS
i

mipi
⌉

(5.5)
Proof: As in the
y
li
 assignment s
hedule, if the
hunks of groups are exe
uted in lexi
o-graphi
 order, the
hunk
ontaining row (•, jG

2 , . . . , j
G
n) will be exe
uted after

n∑

i=2

[
⌊
jG
i

pi

⌋
n∏

k=i+1

⌈
ws

k

mkpk

⌉

]
hunks. The laten
y imposed by ea
h of the previous
hunks, is greater than the respe
tiveone when applying the
y
li
 assignment s
hedule. It equals to wS
1 +

n∑
i=2

[(mi + 1)pi]−2n+2,sin
e the
omputation of a whole
hunk should be �nished before the
omputation of the next
hunk starts. In addition, as dedu
ed from Figure 5.4, the position of a group, relatively tothe
orresponding
hunk origin, is (jG
1

′
, jG

2 %p2, . . . , j
G
n %pn), where jG

1
′
= jS

1 +
n∑

i=2

jS
i %mipi.

5.3 Mirror assignment to SMPs 133
Therefore, group ~jG will be
omputed during the time step
t(~jG) = jG

1

′
+

n∑

i=2

jG
i %pi +

[
wS

1 +

n∑

i=2

[(mi + 1)pi] − 2n+ 2

]
n∑

i=2

[
⌊
jG
i

pi

⌋

n∏

k=i+1

⌈
wS

k

mkpk

⌉

]Thus, the makespan will be
℘

mirror−overlap = max t(~jG) − min t(~jG) + 1 =
(C.3)
= uS

1 +
n∑

i=2

[
uS

i %mipi + ⌊
uS

i

mi
⌋%pi

]
+

+

[
wS

1 +
n∑

i=2

[(mi + 1)pi] − 2n+ 2

]
n∑

i=2

[
⌊

uS
i

mipi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
+ 1 =

(C.4),(C.7)
=

n∑
i=2

[
(wS

i − 1)%mipi + (⌈
wS

i

mi
⌉ − 1)%pi

]
−

n∑
i=2

[(mi + 1)pi] + 2n− 2+

+

[
wS

1 +
n∑

i=2

[(mi + 1)pi] − 2n+ 2

]
n∏

i=2

⌈
wS

i

mipi
⌉.

⊣Following this s
hedule, there is no need to prove that the data required will be availableduring the
omputation of a tile, sin
e,1. the tiles of a
hunk are dependent only on tiles of the same or of a lexi
ographi
allyprevious
hunk and,2. there is no possibility to overlap the
omputations of di�erent
hunks.If there is no shortage of pro
essors (wS
i ≤ mipi, ∀i = 2, . . . , n), the proposed s
hedules areequivalent. Otherwise, it
an be easily dedu
ed from formulas (5.1), (5.5) that ℘

cyclic−overlap

< ℘
mirror−overlap. Their di�eren
e is due to the fa
t that, following the mirror assignments
hedule, every time the
omputation of a
hunk �nishes and the
omputation of the next onestarts, there are some idle time steps for some of the pro
essors, as indi
ated in Figure 5.4by white dots. Thus, when a time step for the
y
li
 s
hedule is equal to a time step for themirror one, the
y
li
 s
hedule is preferable to the mirror one. In fa
t, this is the
ase for theoverlapping exe
ution s
heme.Theorem 5.4 Following the mirror assignment s
hedule, in
ombination to the non-overlappingexe
ution s
heme, the makespan of the exe
ution is:

℘
mirror−nonoverlap =

=
n∑

i=2

[
(wS

i − 1)%mipi

]
−

n∑
i=2

mipi + n− 1 +

[
wS

1 +
n∑

i=2
mipi − n+ 1

]
n∏

i=2
⌈

wS
i

mipi
⌉ ≤

≤

[
wS

1 +
n∑

i=2
mipi − n+ 1

]
n∏

i=2
⌈

wS
i

mipi
⌉

(5.6)

134 S
heduling onto a fixed number of homogeneous SMP nodes
Proof: The laten
y imposed by ea
h one of the previous
hunks is wS

1 +
n∑

i=2

mipi − n+ 1.Consequently, group ~jG will be
omputed during the time step t(~jG) = jG
1

′
+(wS

1 +
n∑

i=2

mipi−

n+ 1)
n∑

i=2

[
⌊

jG
i

pi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]. Thus, the makespan of the exe
ution will be
℘

mirror−nonoverlap = max t(~jG) − min t(~jG) + 1 =

(C.3)
= uS

1 +
n∑

i=2

[
uS

i %mipi

]
+

[
wS

1 +
n∑

i=2

mipi − n+ 1

]
n∑

i=2

[
⌊

uS
i

mipi
⌋

n∏
k=i+1

⌈
wS

k

mkpk
⌉

]
+ 1 =

(C.7)
=

n∑
i=2

[
(wS

i − 1)%mipi

]
−

n∑
i=2

mipi + n− 1 +

[
wS

1 +
n∑

i=2

mipi − n+ 1

]
n∏

i=2

⌈
wS

i

mipi
⌉

⊣It
an be dedu
ed from formulas (5.3), (5.6) that Pcyclic−nonoverlap ≤ Pmirror−nonoverlap.(They are equivalent only in
ase there is no la
k of pro
essors.) However, sin
e the
ommuni-
ation overhead is not hidden under the
omputation time, this s
hedule may sometimes resultin a shorter total exe
ution time, due to better exploitation of the available bandwidth. Inparti
ular, if there are only two SMP nodes along a dimension, no SMP node should both sendand re
eive data along that dimension. Thus, the
ommuni
ation overhead will be halved.5.4 Cluster assignment to SMPsAlternatively, following the approa
h of [MA01℄, generalizing it for n-dimensional spa
es andtaking into a

ount that there is no need for
ommuni
ation among pro
essors of the same SMPnode, we may assign neighboring rows of tiles to the same CPU, as indi
ated in Figure 5.5.
time scheduling

on 2 SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

"GROUPS"
 "TILES"

Figure 5.5: Cluster assignment to SMP nodes.Neighboring tiles,
lustered together to TILES, are assigned to the same CPU. Time s
hedulingdoes not any more
on
ern tiles or groups, but TILES or GROUPS.

5.4 Cluster assignment to SMPs 135
Theorem 5.5 When following the
luster assignment s
hedule, in
ombination to the overlap-ping exe
ution s
heme, the makespan of the exe
ution is:

℘
cluster−overlap =

n∏
i=2

⌈
wS

i

mipi
⌉

(
wS

1 − 2n+ 2 +
n∑

i=2
⌈

wS
i

⌈
wS

i
mipi

⌉
⌉ +

n∑
i=2

⌈
wS

i

mi⌈
wS

i
mipi

⌉
⌉

) (5.7)Proof: In order to a
hieve this s
hedule, we
luster together neighboring tiles (jS
1 , j

S
2 , . . . , j

S
n),mapping them to a \supertile", or TILE, labelled as (jS

1 , ⌊
jS
2

⌈
wS

2
m2p2

⌉
⌋, . . . , ⌊

jS
n

⌈
wS

n
mnpn

⌉
⌋). Thus, the
orresponding GROUP will be ~jG = (jS

1 +
n∑

i=2

⌊
jS
i

⌈
wS

i
mipi

⌉
⌋, ⌊

jS
2

m2⌈
wS

2
m2p2

⌉
⌋, . . . , ⌊

jS
n

mn⌈
wS

n
mnpn

⌉
⌋) andit will be exe
uted during the time STEP t(~jS) = jS

1 +
n∑

i=2

⌊
jS
i

⌈
wS

i
mipi

⌉
⌋ +

n∑
i=2

⌊
jS
i

mi⌈
wS

i
mipi

⌉
⌋. Conse-quently, the MAKESPAN of the algorithm is

℘CLUSTER-OVERLAP = max t(~jS) − min t(~jS) + 1 =
(C.4)
= wS

1 − 2n+ 2 +
n∑

i=2

⌈
wS

i

⌈
wS

i
mipi

⌉
⌉ +

n∑
i=2

⌈
wS

i

mi⌈
wS

i
mipi

⌉
⌉As a TILE
onsists of n∏

i=2

⌈
wS

i

mipi
⌉ tiles, assuming that the duration of a time step is mainlydetermined by the
omputation time tcomp, a STEP will be equivalent to n∏

i=2

⌈
wS

i

mipi
⌉ time steps(ex
luding the DMA initialization and syn
hronization time). Thus, the total number of stepsrequired for the
ompletion of the exe
ution will be

℘
cluster−overlap =

n∏
i=2

⌈
wS

i

mipi
⌉℘CLUSTER-OVERLAP =

=
n∏

i=2

⌈
wS

i

mipi
⌉

(
wS

1 − 2n+ 2 +
n∑

i=2

⌈
wS

i

⌈
wS

i
mipi

⌉
⌉ +

n∑
i=2

⌈
wS

i

mi⌈
wS

i
mipi

⌉
⌉

)

⊣Lemma 5.3 It holds that ℘
cyclic−overlap ≤℘

cluster−overlap.Proof: When there is no la
k of pro
essors (wS
i ≤ mipi, ∀i = 2, . . . , n), the proposeds
hemes are equivalent and it
an be easily proven from (5.1), (5.7) that

℘
cyclic−overlap = ℘

cluster−overlapOtherwise, (5.7) ⇒

℘
cluster−overlap >

n∑

i=2


⌈ wS

i

⌈
wS

i

mipi
⌉
⌉ − 1 + ⌈

wS
i

mi⌈
wS

i

mipi
⌉
⌉ − 1


+ wS

1

n∏

i=2

⌈
wS

i

mipi

⌉.If we write wS
i = ximipi−yi, where xi, yi are integer numbers and xi ≥ 1, 0 ≤ yi < mipi−1,

136 S
heduling onto a fixed number of homogeneous SMP nodes
then it holds that:

(wS
i − 1)%mipi = mipi − yi − 1

⌈
wS

i

⌈
wS

i
mipi

⌉
⌉ − 1

(C.5)
= mipi − ⌊ yi

xi
⌋ − 1



⇒ (wS

i − 1)%mipi ≤ ⌈
wS

i

⌈
wS

i
mipi

⌉
⌉ − 1

(⌈
wS

i

mi
⌉ − 1)%pi

(C.5)
= pi − ⌊ yi

mi
⌋ − 1

⌈
wS

i

mi⌈
wS

i
mipi

⌉
⌉ − 1

(C.5)
= pi − ⌊ yi

mixi
⌋ − 1





⇒ (⌈
wS

i

mi
⌉ − 1)%pi ≤ ⌈

wS
i

mi⌈
wS

i
mipi

⌉
⌉ − 1





⇒

⇒ ℘
cyclic−overlap < ℘

cluster−overlap.

⊣Thus, this s
hedule results to a worse makespan than the
y
li
 one. Their di�eren
e is dueto the fa
t that, in this s
hedule, the �lling of the pipeline is slower (that is, the last pro
essorstarts exe
uting
omputations later). In
ase wS
1 >> wS

i (i = 2, . . . , n), the time ea
h pro
essoris busy, out
anks the pipeline �ling time and it holds that Pcyclic−overlap ≃ Pcluster−overlap.However, the previous mathemati
al lemma has not taken into
onsideration the time requiredfor the initialization of messages and for syn
hronization. Sin
e the
luster assignment s
hedulerequires less messages to be sent and less syn
hronization, in some
ases it may be pra
ti
allyproven more eÆ
ient.Theorem 5.6 Following the
luster assignment s
hedule, in
ombination to the non-overlappingexe
ution s
heme, the makespan of the exe
ution is:
℘

cluster−nonoverlap = C

(
wS

1 − n+ 1 +
n∑

i=2
⌈

wS
i

⌈
wS

i
mipi

⌉
⌉

)
≤ C

(
wS

1 − n+ 1 +
n∑

i=2
mipi

) (5.8)where 1 ≤ C ≤
n∏

i=2
⌈

wS
i

mipi
⌉Proof: Tile (jS

1 , j
S
2 , . . . , j

S
n),
orresponding to GROUP

~jG = (jS
1 +

n∑

i=2

⌊
jS
i

⌈
wS

i

mipi
⌉
⌋, ⌊

jS
2

m2⌈
wS

2

m2p2
⌉
⌋, . . . , ⌊

jS
n

mn⌈
wS

n

mnpn
⌉
⌋)is exe
uted during the time STEP t(~jS) = jS

1 +
n∑

i=2

⌊
jS
i

⌈
wS

i
mipi

⌉
⌋. Consequently, the MAKESPANof the exe
ution is

℘CLUSTER-NONOVERLAP = max t(~jS) − min t(~jS) + 1
(C.4)
= wS

1 − n+ 1 +

n∑

i=2

⌈
wS

i

⌈
wS

i

mipi
⌉
⌉.A
omputation subSTEP is equivalent to n∏

i=2

⌈
wS

i

mipi
⌉
omputation substeps, but a
ommuni-
ation subSTEP is equivalent to less than n∏

i=2

⌈
wS

i

mipi
⌉
ommuni
ation substeps. In parti
ular,

5.5 Retiling 137
if the
ommuni
ation load is equal along all
ommuni
ation dimensions (as resulted by themethod proposed in [Xue97a℄), the amount of data to be transferred, as indi
ated in Fig-ure 5.6, is n∏

i=2

⌈
wS

i

mipi
⌉

n∑
i=2

1

(n−1)⌈
wS

i
mipi

⌉
≤

n∏
i=2

⌈
wS

i

mipi
⌉ times the
ommuni
ation load of a tile.Thus, the makespan of the algorithm will be

℘
cluster−nonoverlap = C℘CLUSTER-NONOVERLAP (where 1 ≤ C ≤

n∏
i=2

⌈
wS

i

mipi
⌉) ⇒

℘
cluster−nonoverlap = C

(
wS

1 − n+ 1 +
n∑

i=2

⌈
wS

i

⌈
wi

mipi
⌉
⌉

)

⊣

clustering
Figure 5.6: Clustering
ommuni
ationIn
on
lusion,
omparing to the
y
li
 assignment s
hedule, this method has the drawba
kof slower pipeline �lling. However, it results to less
ommuni
ation overhead, whi
h signi�-
antly redu
es the total exe
ution time, espe
ially when the non-overlapping exe
ution s
hemeis applied.5.5 RetilingA more eÆ
ient s
hedule
an be obtained, if we adapt the size of tiles to the available numberof SMPs (Figure 5.7). That is, we retile the initial iteration spa
e, so as to get wS
i
′
= mipi,

(i = 2, . . . , n) and wS
1
′

= wS
1

n∏
i=2

wS
i

mipi
. Then, the size of a \new" tile will be equal to thesize of an \old" tile and,
onsequently, a \new"
omputation step will be equivalent to an\old"
omputation step. Following the overlapping exe
ution s
heme, the number of time stepsrequired for the
ompletion of the exe
ution, a

ording to formula (4.3), will be ℘

retile−overlap =
n∑

i=1
wS

i
′
+

n∑
i=2

⌈
wS

i

′

mi
⌉ − 2n+ 2 ⇒

℘
retile−overlap =

n∑
i=2

[(mi + 1) pi] − 2n+ 2 + wS
1

n∏
i=2

wS
i

mipi
(5.9)In
ase wS

i %mipi = 0 (i = 2, . . . , n), it holds that ℘
retile−overlap =℘

cyclic−overlap. Otherwise,
℘

retile−overlap < ℘
cyclic−overlap. Their di�eren
e is due to the fa
t that the
y
li
 s
hedule doesnot assign exa
tly the same number of tiles to ea
h pro
essor, resulting to a slight load imbalan
e.

138 S
heduling onto a fixed number of homogeneous SMP nodes

time scheduling

on 2 SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

Figure 5.7: Retiling.The tile spa
e is re-
onstru
ted from s
rat
h, so as to �t the existing pro
essing ar
hite
ture.
Using the non-overlapping exe
ution s
heme, the number of time steps required for the
ompletion of the exe
ution, a

ording to formula (4.4), will be ℘

retile−nonoverlap =
n∑

i=1
wS

i
′
−

n+ 1 ⇒

℘
retile−nonoverlap =

n∑
i=2

mipi − n+ 1 + wS
1

n∏
i=2

wS
i

mipi
(5.10)From (5.3), (5.10), we
an dedu
e that ℘

retile−nonoverlap ≤℘
cyclic−nonoverlap. In addition, a\new"
omputation substep is equivalent to an \old"
omputation substep, but a \new"
om-muni
ation substep is equivalent to less than an \old"
ommuni
ation substep. In parti
ular,as in Theorem 5.6, if the
ommuni
ation load is equal along all
ommuni
ation dimensions, theamount of data to be transferred is n∑

i=2

1

(n−1)
wS

i
mipi

≤ 1 times the
ommuni
ation load of an \old"tile.In
on
lusion, when the tile spa
e is re
tangular, this s
hedule is preferable to previouslyproposed ones, assuming that there are no fa
tors
onstraining the tile shape, su
h as falsesharing, or
a
he lo
ality [KRC99℄, [LRW91℄, [WL91a℄, [MHCF98℄, [PHP03℄. It
an fully exploitthe
omputational power of all the SMP nodes and it a
hieves a perfe
t load balan
e, withoutimposing any additional
omplexity to the initial s
hedule, at least when a re
tangular tile spa
eis
on
erned. But if, apart from parallel s
heduling, there are other fa
tors
onstraining the tilesize and shape, this s
hedule may prove to be ineÆ
ient, sin
e it totally reorganizes the exe
utionorder of iterations.

5.6 Experimental Results 1395.6 Experimental Results5.6.1 Experimental PlatformIn order to evaluate the proposed methods, we use a Linux SMP
luster with 2 identi
al nodes.Ea
h node has 1GB of RAM and 2 Pentium III � 1266 MHz CPUs. The
luster nodes
om-muni
ate through a Myrinet high performan
e inter
onne
t, using the GM low level messagepassing system.In order to utilize the available pro
essors in ea
h SMP node as eÆ
iently as possible, ourimplementation uses one multi-threaded pro
ess per SMP, with the number of threads equal tothe number of CPUs. Multithreading support is based on the LinuxThreads library. Threadsexe
uting on the same SMP
ommuni
ate using shared memory, eliminating the need for messagepassing. For the data ex
hange between pro
esses exe
uting on di�erent SMPs, Myri
om's GMversion 1.6.3 is used [Myr02℄. GM is a low-level message passing library for Myrinet. It
omprisesa library used by userspa
e programs, an OS driver (in our
ase, a Linux kernel module) anda Myrinet Control Program (MCP), whi
h is exe
uted on the LANai, the embedded RISCmi
ropro
essor on the Myrinet NIC. The GM driver is used during the exe
ution of a userspa
epro
ess to open and
lose ports and to allo
ate and free memory suitable for DMA transfers. Aport is a
ommuni
ation endpoint, used as the interfa
e between a userspa
e pro
ess and theNIC. Having opened a port, a pro
ess
an
ommuni
ate dire
tly with the NIC, without the needfor system
alls, bypassing the operating system. Thus, all data ex
hange is performed dire
tlyto and from userspa
e bu�ers.To provide
ow
ontrol between the host and the NIC, sending and re
eiving messages isregulated by tokens. Initially, a pro
ess possesses a �nite number of send and re
eive tokens.To be able to re
eive a message, the pro
ess must provide GM with a bu�er in DMAablememory, relinquishing a re
eive token. When a message is re
eived, the DMA engine on theMyrinet NIC pla
es it dire
tly into the userspa
e bu�er. The pro
ess polls for new messages andretrieves the re
eive token when a message arrives. The same applies to sending messages: Thepro
ess relinquishes a send token by requesting the transmission of a message from a userspa
ebu�er, then retrieves it when the send operation
ompletes and an appropriate send
ompletion
allba
k fun
tion is exe
uted by GM. As the data ex
hange between the host memory and theNIC is undertaken by the DMA engine on the NIC, without involving the CPU, overlapping of
ommuni
ation with
omputation is possible.5.6.2 Experimental Data: Re
tangular Tile Spa
esWe performed several series of experiments in order to evaluate and
ompare the pra
ti
alspeedups obtained using ea
h one of the four alternative s
hedules,
ombined with both thealternative exe
ution s
hemes. Our test appli
ation
ode was the following:

140 S
heduling onto a fixed number of homogeneous SMP nodes
for(i=1; i<=X; i++)for(j=1; j<=Y; j++)for(k=1; k<=Z; k++)A[i℄[j℄[k℄=fun
(A[i-1℄[j℄[k℄,A[i℄[j-1℄[k℄,A[i℄[j℄[k-1℄);where A is an array of X × Y × Z
oats and X = Y << Z. Without la
k of generality, we
onsider, as a tile, a re
tangle with ij, ik and jk sides. The dimension k is the largest one, so alltiles along the k-axis are mapped onto the same pro
essor, as proposed in [AKPT99℄, [GSK01℄.Ea
h tile has i, j, k dimensions equal to x. Thus, there are X

x tiles along dimensions i, j and
Z
x tiles along dimension k. Tile's volume is equal to g = x3. As des
ribed in [HS98℄, g hasbeen sele
ted, so that tcomp = tcomm, after experimentally measuring the
omputation time periteration, the time required per data item to be transferred and the
ommuni
ation initializationand �nalization overhead.After implementing all four s
hedules in
ombination with both exe
ution s
hemes, as de-s
ribed by the pseudo-
ode of Tables 5.1, 5.2, we measured the performan
e of all s
hedulesand
ompared it with their theoreti
ally expe
ted performan
e. For various tile sizes, we have
ondu
ted a series of experiments for ea
h s
hedule+exe
ution s
heme
ombination, varying theiteration spa
e size. In Figures 5.8-5.10 we have plotted our experimental results along withthe respe
tive theoreti
al
urves. As a measure of performan
e, we have used the ratio of thespeedup obtained to the best possible speedup. That is, we have depi
ted the ratio of thespeedup obtained to the number of pro
essors used. Thus, the
loser a plot is to 1, the moreeÆ
ient a s
hedule is. As
an be seen in Figures 5.8-5.10, the pra
ti
al
ompletion times of ourexperiments di�er to our theoreti
al predi
tions by at most 3%. For the overlapping
ommuni-
ation s
hedules, this
an be attributed to both the DMA engine on the Myrinet NIC and theCPU trying to a

ess data in memory.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
retile - overlapping (theoretical)

cluster - overlapping
cluster - overlapping (theoretical)

mirror - overlapping
mirror - overlapping (theoretical)

cyclic - overlapping
cyclic - overlapping (theoretical)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
retile - non-overlapping (theoretical)

cluster - non-overlapping
cluster - non-overlapping (theoretical)

mirror - non-overlapping
mirror - non-overlapping (theoretical)

cyclic - non-overlapping
cyclic - non-overlapping (theoretical)

Figure 5.8: Experimental Data: Tile Size 32 × 32 × 32One
an easily dedu
e that in almost all
ases, the retiling s
hedule a
hieves the best per-forman
e, both theoreti
ally and experimentally. This result was expe
ted, sin
e the retilings
hedule absolutely adjusts tiles to the existing
on�guration of a
luster. However, in our ex-

5.6 Experimental Results 141
Table 5.1: Implementation of s
hedules (
y
li
 assignment, mirror assignment,
lusterassignment to SMP nodes) when the tile spa
e is re
tangular

Cyclic Assignment - Rectangular Tile SpaceFOREACH CPU with
oordinates (cpu id2, . . . , cpu idn)in SMP node with
oordinates (smp id2, . . . , smp idn) DOFOR (t2 = smp id2 ∗ m2 + cpu id2; t2 < wS
2 ; t2+ = m2 ∗ p2)FOR (t3 = smp id3 ∗ m3 + cpu id3; t3 < wS

3 ; t3+ = m3 ∗ p3)FOR (t1 = 0; t1 < wS
1 ; t1 + +){Exe
ute pre-
omputation part of Communi
ationExe
ute Computation of tile (t1, t2, t3)Exe
ute post-
omputation part of Communi
ation

}

Mirror Assignment - Rectangular Tile SpaceFOREACH CPU with
oordinates (cpu id2, . . . , cpu idn)in SMP node with
oordinates (smp id2, . . . , smp idn) DOFOR (x2 = 0; x2 < ⌈
wS

2

m2∗p2
⌉; x2 + +){

t2 = x2 ∗ m2 ∗ p2 + (1 − x2%2) ∗ (smp id2 ∗ m2 + cpu id2) + (x2%2) ∗ (m2 ∗ p2 − 1 − smp id2 ∗ m2 − cpu id2);IF (t2 < wS
2)FOR (x3 = 0; x3 < ⌈

wS
3

m3∗p3
⌉; x3 + +){

t3 = x3 ∗ m3 ∗ p3 + (1 − x3%2) ∗ (smp id3 ∗ m3 + cpu id3) + (x3%2) ∗ (m3 ∗ p3 − 1 − smp id3 ∗ m3 − cpu id3);IF (t3 < wS
3){Exe
ute pre-
omputation part of Communi
ationExe
ute Computation of tile (t1, t2, t3)Exe
ute post-
omputation part of Communi
ation

}
}

}

Cluster Assignment - Rectangular Tile SpaceFOREACH CPU with
oordinates (cpu id2, . . . , cpu idn)in SMP node with
oordinates (smp id2, . . . , smp idn) DOFOR (t1 = 0; t1 < wS
1 ; t1 + +){Exe
ute pre-
omputation part of Communi
ationFOR (t2 = (smp id2 ∗ m2 + cpu id2) ∗ ⌈

wS
2

m2∗p2
⌉;

t2 < min(wS
2 , (smp id2 ∗ m2 + cpu id2 + 1) ∗ ⌈

wS
2

m2∗p2
⌉); t2 + +)FOR (t3 = (smp id3 ∗ m3 + cpu id3) ∗ ⌈

wS
3

m3∗p3
⌉;

t3 < min(wS
3 , (smp id3 ∗ m3 + cpu id3 + 1) ∗ ⌈

wS
3

m3∗p3
⌉); t3 + +){Exe
ute Computation of tile (t1, t2, t3)

}Exe
ute post-
omputation part of Communi
ation
}

Retiling - Rectangular Tile Space

wS
1 ∗ =

wS
2

m2∗p2
∗

wS
3

m3∗p3

wS
2 = m2 ∗ p2

wS
3 = m3 ∗ p3FOREACH CPU with
oordinates (cpu id2, . . . , cpu idn)in SMP node with
oordinates (smp id2, . . . , smp idn) DO{

t2 = smp id2 ∗ m2 + cpu id2;
t3 = smp id3 ∗ m3 + cpu id3;FOR (t1 = 0; t1 < wS

1 ; t1 + +){Exe
ute pre-
omputation part of Communi
ationExe
ute Computation of tile (t1, t2, t3)Exe
ute post-
omputation part of Communi
ation
}

}

142 S
heduling onto a fixed number of homogeneous SMP nodes
Table 5.2: Exe
ution s
hemes implementation (overlapping vs. non-overlapping) usingthe GM low level message passing system

Non Overlapping Execution Scheme Overlapping Execution SchemePre-
omputation Part of Communi
ationgm provide re
eive buffer() If on first tiledo Exe
ute a non-overlapping re
eivepoll the GM event queue gm provide re
eive buffer() for tile (t1 + 1, t2, t3)pro
ess the event gm send with
allba
k() for tile (t1 − 1, t2, t3)until data re
eived Post-
omputation Part of Communi
ationgm send with
allba
k() dodo poll the GM event queuepoll the GM event queue pro
ess the eventpro
ess the event until send & re
eive
ompleteduntil data sent Barrier for Threads in SMPBarrier for Threads in SMP If on last tileExe
ute a non-overlapping send

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
retile - overlapping (theoretical)

cluster - overlapping
cluster - overlapping (theoretical)

mirror - overlapping
mirror - overlapping (theoretical)

cyclic - overlapping
cyclic - overlapping (theoretical)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
retile - non-overlapping (theoretical)

cluster - non-overlapping
cluster - non-overlapping (theoretical)

mirror - non-overlapping
mirror - non-overlapping (theoretical)

cyclic - non-overlapping
cyclic - non-overlapping (theoretical)

Figure 5.9: Experimental Data: Tile Size 128 × 32 × 32periments we have eliminated the e�e
t of
a
he miss penalties by using small iteration spa
ewidths. If our iteration spa
e dimensions, whi
h are not assigned to the same pro
essor, were toolong, the retiling s
hedule
ould have destroyed the data lo
ality a
hieved by optimally sele
tedsmall tiles.Note also that in the above examples the
luster assignment s
hedule, using tile size x, isequivalent to the retiling s
hedule, using tile size 4x. This was expe
ted,
onsidering that by
onstru
tion the iterations exe
uted and the data sent in these two
ases are the same. Whatdi�ers is the exe
ution order of iterations but here we have eliminated the
a
he misses overhead,in order to test the optimality of our s
hedules and not data lo
ality.When following the non-overlapping exe
ution s
heme, the di�eren
e among the performan
eof the four s
hedules is mainly due to the volume of the data to be transferred. As depi
tedin Figure 5.11, the mirror assignment s
hedule involves double the
ommuni
ation of retilingand
luster assignment s
hedule, while the
y
li
 assignment s
hedule involves 6 times the same
ommuni
ation volume.

5.6 Experimental Results 143

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
retile - overlapping (theoretical)

cluster - overlapping
cluster - overlapping (theoretical)

mirror - overlapping
mirror - overlapping (theoretical)

cyclic - overlapping
cyclic - overlapping (theoretical)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
retile - non-overlapping (theoretical)

cluster - non-overlapping
cluster - non-overlapping (theoretical)

mirror - non-overlapping
mirror - non-overlapping (theoretical)

cyclic - non-overlapping
cyclic - non-overlapping (theoretical)

Figure 5.10: Experimental Data: Tile Size 256 × 32 × 32

SMP node0

SMP node1

Retiling or

Cluster assignment scheme

SMP node0

SMP node1

Mirror assignment scheme

SMP node0

SMP node1

Cyclic assignment scheme

Figure 5.11: Communi
ation among SMPsWhen following the overlapping exe
ution s
heme, sin
e the
ommuni
ation volume is hiddenunder
omputation, their di�eren
e is due to the time steps that ea
h SMP has to stall waiting forthe required data to arrive. The number of these time steps are equal regarding the retiling andthe
y
li
 assignment s
hedules. However, using the
luster or the mirror assignment s
hedule,the number of idle time steps (see Figures 5.3, 5.4) is multiplied by the number of tiles
lusteredtogether, or, equivalently, the number of
lunks of tiles, whi
h �t the pro
essing ar
hite
ture.In addition, note that all s
hedules a
hieve better performan
e for long iteration spa
es.This is due to the fa
t that, when the mapping dimension of the iteration spa
e is
omparativelyshort, the time required for the last pro
essor to start
omputing after the �rst data have arrived,is not minor in
omparison to the total exe
ution time.5.6.3 Simulation DataThe previous experimental data have been obtained on a
luster of 2 SMP nodes with 2 CPUsea
h. Note in Figure 5.11 that in the retiling and the
luster assignment s
hedule there isno SMP node that should both send and re
eive data. Thus, we expe
t that the relativeperforman
e of the four s
hedules would
hange when s
aling up our underlying ar
hite
ture.In order to evaluate the merits of the proposed s
hedules, using bigger
lusters than the one wehad available, we performed a number of simulations, whose results are depi
ted in Figures 5.12-

144 S
heduling onto a fixed number of homogeneous SMP nodes
5.14. The performan
e of all four s
hedules has been simulated assuming that the initializationof DMA and syn
hronization overhead is negligible, as dedu
ed from mi
roben
hmarking in ourplatform.In parti
ular, all measurements of time intervals have been based on the rdts
 (ReadTimeStamp Counter) instru
tion, whi
h is available on all Intel pro
essors beyond Pentium.This instru
tion returns the value of a 64-bit register whi
h is in
remented every
lo
k
y
le.Sin
e rdts

an be
alled dire
tly by a userspa
e pro
ess, we do not in
ur the overhead of thegettimeofday system
all. Thus, we have measured: 400
y
les for the send with
allba
kfun
tion, whi
h is 0.316µsec on a PIII�1266MHz, 800
y
les for gm provide re
eive buffer,whi
h is 0.632µsec and 5598
y
les for a barrier, whi
h is 4.421µsec. Thus, the total non-overlappable
ommuni
ation laten
y imposed to ea
h tile is less than 6µsec in the worst
ase.This overhead is negligible in
omparison to a tile
omputation, whi
h, in all
ases, needed morethan 24msec.Similar to Figures 5.8-5.10, the values plotted in Figures 5.12-5.14 express, for ea
h proposeds
hedule, the speedup obtained, divided by the number of CPUs used: Speedup

Number of Processors Used .Therefore, the
losest a plot is to 1, the more eÆ
ient the
orresponding s
hedule will be.
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
cluster - overlapping
mirror - overlapping
cyclic - overlapping

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
cluster - non-overlapping
mirror - non-overlapping
cyclic - non-overlapping

Figure 5.12: Simulation Data: Tile Spa
e · · · × 16 × 16 on a grid of 4 × 4 nodes with
2 × 2 CPUs ea
hIt
an be easily seen that when we are not interested in possible
a
he miss penalties imposedby reorganizing the tile spa
e, the retiling s
hedule is again the most eÆ
ient one, due to thefa
t that it
an fully exploit the
omputational power of all the SMP nodes and by de�nition ita
hieves a perfe
t load balan
e.As far as the
luster assignment s
hedule is
on
erned, for small tile spa
es, it is ineÆ
ientdue to its slow pipeline �lling. However, when the mapping dimension of the tile spa
e is longenough, this s
hedule a
hieves high speedups, due to the fa
t that it minimizes the volume of datato be transferred. In fa
t, as explained in §5.6.2, the plot representing the
luster assignments
hedule will fall onto the plot representing the retiling s
hedule if we shift it parallely to thex-axis (see Figures 5.12, 5.14). The
luster assignment s
hedule is less eÆ
ient than the retiling

5.6 Experimental Results 145

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
cluster - overlapping
mirror - overlapping
cyclic - overlapping

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
cluster - non-overlapping
mirror - non-overlapping
cyclic - non-overlapping

Figure 5.13: Simulation Data: Tile Spa
e · · · × 22 × 22 on a grid of 4 × 4 nodes with
2 × 2 CPUs ea
h

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
cluster - overlapping
mirror - overlapping
cyclic - overlapping

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
cluster - non-overlapping
mirror - non-overlapping
cyclic - non-overlapping

Figure 5.14: Simulation Data: Tile Spa
e · · · × 16 × 16 on a grid of 2 × 2 nodes with
4 × 4 CPUs ea
hs
hedule, only in
ase wS

i is not a multiple of mipi (see Figure 5.13), due to load imbalan
e.We also dedu
e that the
y
li
 assignment s
hedule is equivalent to the retiling s
hedule,when the number of tiles along ea
h dimension i is a multiple of mipi and the overlappingexe
ution s
heme is used. Otherwise, if wS
i is not a multiple of mipi, their di�eren
e is dueto the fa
t that the
y
li
 s
hedule does not a
hieve a perfe
t load balan
e. Using the non-overlapping exe
ution s
heme, the di�eren
e is due to the fa
t that, as analyzed in Figure 5.6and §5.5, the
y
li
 s
hedule results to more
ommuni
ation load, whi
h is not hidden under the
omputation load. In addition, it
an be more eÆ
ient than the
luster assignment s
hedule,only in
ase we use the overlapping
ommuni
ation s
heme. This is due to the fa
t that in this
ase the extra
ommuni
ation overhead of the
y
li
 s
hedule is hidden under the
omputationload.The mirror assignment s
hedule is almost always the least eÆ
ient, apart from the
ase ofusing the non-overlapping exe
ution s
heme on a grid of 2× 2 SMP nodes. Even then, it is notmore eÆ
ient than the
luster assignment s
hedule. This is due to the fa
t that it
ombines thedisadvantages of the
y
li
 s
hedule with the disadvantages of the
luster assignment s
hedule.

146 S
heduling onto a fixed number of homogeneous SMP nodes
That is, there is at least one node, whi
h has both to send and to re
eive data (unless there areat most two nodes along ea
h dimension of the grid, as in Figures 5.8-5.10 and Figure 5.14), thusthe duration of a time step is equal to the one of the
y
li
 s
hedule and the improvement in theexploitation of the existing bandwidth is minor. In addition, after all SMP nodes have startedtheir exe
ution, there are some idle time steps for some of them (see Figure 5.4),
orrespondingto the slower pipeline �lling of the
luster assignment s
hedule.5.7 Blo
k-
y
li
 assignment to SMPsSin
e, as shown in §5.6.2-§5.6.3, apart from retiling, the best performan
e is given by either the
y
li
 or the
luster assignment s
hedule, we also designed a
ombination of these s
hedules:blo
k-
y
li
 assignment s
hedule. So, we hope to a
hieve the happy medium between them.Espe
ially when dealing with non-re
tangular tile spa
es, blo
k-
y
li
 s
hedule is supposed toa
hieve low
ommuni
ation overhead (as the
luster assignment s
hedule does), and at the sametime relatively good load balan
e (as the
y
li
 assignment s
hedule does).As shown in Figure 5.15, blo
k-
y
li
 s
hedule is formed by
lustering together some neigh-boring tiles, as we did in the
luster assignment s
hedule. For example, in Figure 5.15, we
lustertogether b2 = 2 tiles. The di�eren
e, in
omparison to the
luster s
hedule, lies in the fa
t thatnow we do not
luster together so many tiles, as to get a number of rows of TILES equal to thenumber of CPUs available. In the sequel, we
y
li
ally s
hedule TILES, or GROUPS, similarlyto s
heduling tiles or groups a

ording to the
y
li
 assignment s
hedule.Theorem 5.7 The makespan of blo
k-
y
li
ally assigning a re
tangular tile spa
e to SMP nodes,assuming overlapping
ommuni
ation with
omputation is:
℘

block−cyclic−overlap =

[
n∑

i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi + (⌈

wS
i

bimi
⌉ − 1)%pi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉

]
n∏

i=2
bi(5.11)

Proof: In order to a
hieve this s
hedule, we
luster together b2 × · · · × bn neighboring tiles
(jS

1 , j
S
2 , . . . , j

S
n), mapping them to TILE labelled as (jS

1 , ⌊
jS
2

b2
⌋, . . . , ⌊

jS
n

bn
⌋). The boundaries ofthe
onsequent TILE Spa
e are 0..uS

1 = wS
1 −1 for the �rst dimension and 0..⌊

uS
i

bi
⌋ = ⌈

wS
i

bi
⌉−1for i = 2, . . . , n.Thus, repla
ing wS

i with ⌈
wS

i

bi
⌉, i = 2, . . . , n in formula (5.1) and taking into a

ountformula (C.2), we get:

℘BLOCK-CYCLIC-NONOVERLAP =

n∑

i=2

[
(⌈
wS

i

bi
⌉ − 1)%mipi + (⌈

wS
i

bimi

⌉ − 1)%pi

]
+wS

1

n∏

i=2

⌈
wS

i

bimipi

⌉In addition, as a TILE
onsists of n∏
i=2

bi tiles, assuming that the duration of a time step

5.7 Blo
k-
y
li
 assignment to SMPs 147

Clustering 2 tiles
together

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j1S

j2S

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j1S

j2S
"GROUPS" "TILES"

SMP4

SMP5

SMP6

SMP7

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j1S

j2S
Cyclically schedulling
on 2 SMP nodes

Figure 5.15: Blo
k-
y
li
 assignment to SMP nodes.Firstly, tiles are
lustered together, so as to form TILES. Then, TILES are
y
li
ally assigned toCPUs. Chunks of TILES are exe
uted one after the other, in lexi
ographi
 order.
is mainly determined by the
omputation time tcomp, a STEP will be equivalent to n∏

i=2

bi timesteps (ex
luding the DMA initialization and syn
hronization time). Thus, the total number

148 S
heduling onto a fixed number of homogeneous SMP nodes
of steps required for the
ompletion of the exe
ution will be

℘
block−cyclic−overlap = ℘BLOCK-CYCLIC-OVERLAP n∏

i=2

bi =

=

[
n∑

i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi + (⌈

wS
i

bimi
⌉ − 1)%pi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉

]
n∏

i=2

bi

⊣Theorem 5.8 The makespan of blo
k-
y
li
ally assigning a re
tangular tile spa
e to SMP nodes,following the non-overlapping exe
ution s
heme, is:
℘

block−cyclic−nonoverlap = C

(
n∑

i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉

) (5.12)where 1 ≤ C ≤
n∏

i=2
bi.Proof: As in the proof of theorem 5.7, in formula (5.3) we repla
e wS

i with ⌈
wS

i

bi
⌉, i =

2, . . . , n. Thus, we get:
℘BLOCK-CYCLIC-NONOVERLAP =

n∑
i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉In addition, as in the proof of theorem 5.6, a
omputation subSTEP is equivalent to n∏

i=2

bi
omputation substeps, but a
ommuni
ation subSTEP is equivalent to less than n∏
i=2

bi
ommu-ni
ation substeps. In parti
ular, if the
ommuni
ation load is equal along all
ommuni
ationdimensions (as resulted by the method proposed in [Xue97a℄), the amount of data to be trans-ferred, as indi
ated in Figure 5.6, is n∏
i=2

bi
n∑

i=2

1
(n−1)bi

≤
n∏

i=2

bi times the
ommuni
ation loadof a tile. Thus, the makespan of the exe
ution will be
℘

block−cyclic−nonoverlap = C℘BLOCK-CYCLIC-NONOVERLAP (where 1 ≤ C ≤
n∏

i=2

bi) ⇒

℘
block−cyclic−nonoverlap = C

(
n∑

i=2

[
(⌈

wS
i

bi
⌉ − 1)%mipi

]
+ wS

1

n∏
i=2

⌈
wS

i

bimipi
⌉

)

⊣When the tile spa
e is re
tangular, the blo
k
y
li
 assignment s
hedule
an be implementedby the pseudo
ode of Table 5.3.5.8 Implementation issues for non-re
tangular tile spa
esAs dedu
ed from Tables 5.1, 5.3, the implementation of the proposed s
hedules onto a re
tangulartile spa
e spa
e is quite simple and straightforward. However,
on
erning a non-re
tangular tile

5.8 Implementation issues for non-re
tangular tile spa
es 149
Table 5.3: Implementation of the blo
k-
y
li
 assignment s
hedule when the tile spa
e isre
tangular

Block-Cyclic Assignment - Rectangular Tile SpaceFOREACH CPU with
oordinates (cpu id2, . . . , cpu idn)in SMP node with
oordinates (smp id2, . . . , smp idn) DOFOR (tt2 = smp id2 ∗ b2 ∗ m2 + cpu id2 ∗ b2; tt2 < wS
2 ; tt2+ = b2 ∗ m2 ∗ p2)FOR (tt3 = smp id3 ∗ b3 ∗ m3 + cpu id3 ∗ b3; tt3 < wS

3 ; tt3+ = b3 ∗ m3 ∗ p3)FOR (t1 = 0; t1 < wS
1 ; t1 + +){Exe
ute pre-
omputation part of Communi
ationFOR (t2 = tt2; t2 < min(wS

2 , tt2 + b2); t2 + +)FOR (t3 = tt3; t3 < min(wS
3 , tt3 + b3); t3 + +){Exe
ute Computation of tile (t1, t2, t3)

}Exe
ute post-
omputation part of Communi
ation
}spa
e, an eventual implementation may be ineÆ
ient or
rush, if some details are not taken intoa

ount.5.8.1 Assigning as many neighboring tiles as possible to the same SMP nodeA

ording to the pseudo
ode of Table 5.1 for the
y
li
 assignment s
hedule, or of Table 5.3for the blo
k-
y
li
 one, we may assume that, when a non re
tangular tile spa
e is involved,formulas

t2 = lS2 + smp id2m2 + cpu id2 and t3 = lS3 + smp id3m3 + cpu id3or
tt2 = lS2 + smp id2b2m2 + cpu id2b2 and tt3 = lS3 + smp id3b2m3 + cpu id3b3respe
tively, should be employed for the
al
ulation of the lower loop bounds. However, thisallo
ation s
heme would result to non-re
tangular parts of the tile spa
e being assigned to ea
hSMP node. It would in
rease the
ommuni
ation load of the �nal parallel exe
ution, as depi
tedin Figure 5.16(a).In order to evi
t su
h an ineÆ
ient utilization of the bandwidth, we propose the use offun
tion

adjust mod(l, α, β, b) =

{
⌊ l

α⌋α+ β if ⌊ l
α⌋α+ β + b− 1 ≥ l

⌈ l
α⌉α+ β else (5.13)whi
h results to the allo
ation s
heme of Figure 5.16(b), if we repla
e the lower bounds of therespe
tive loop indi
es by:

t2 = adjust mod(lS2 ,m2p2, smp id2m2 + cpu id2, 1)

t3 = adjust mod(lS3 ,m3p3, smp id3m3 + cpu id3, 1)

150 S
heduling onto a fixed number of homogeneous SMP nodes

Tile Space: 0 <= j1S <= 100 0 <= j2S <= 7 j2S <= j3S <= 7
j2S

j3S

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (1,0)

smp (1,0) - cpu (0,0)

smp (1,0) - cpu (1,0)

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (1,0)

smp (1,0) - cpu (0,0)

smp (1,0) - cpu (1,0)

smp (0,0) - cpu (0,1)

smp (0,1) - cpu (0,0)

smp (0,1) - cpu (0,1)

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (0,1)

smp (0,1) - cpu (0,0)

smp (0,1) - cpu (0,1)

j2S

j3S

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (1,1)

smp (1,1) - cpu (0,0)

smp (1,1) - cpu (1,1)

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (1,1)

smp (1,1) - cpu (0,0)

smp (1,1) - cpu (1,1)

smp (0,0) - cpu (0,1)

smp (0,1) - cpu (0,0)

smp (0,1) - cpu (0,1)

smp (0,0) - cpu (0,0)

smp (0,0) - cpu (0,1)

smp (0,1) - cpu (0,0)

smp (0,1) - cpu (0,1)

(a) Allocating tiles to CPUs
according to their distance from the
lower bound of the tile space

(b) Allocating tiles to CPUs so as to
assign neighboring tiles to the
same SMP node

Figure 5.16: Allo
ating a non-re
tangular tile spa
e to pro
essors.In this �gure we have represented the proje
tion of the tile spa
e onto axis plane jS
2 − jS

3 . Weindi
ate whi
h pro
essors undertake the boundary tiles, if we have a
luster of 2× 2 SMP nodes,
ontaining 2 × 2 pro
essors ea
h. Tiles, whi
h are assigned to the same SMP node have beendepi
ted using the same grey tone. We have also indi
ated the subsequent
ommuni
ation amongtiles assigned to di�erent SMP nodes, using bla
k arrows. In sub�gure (a) more data transfersare implied. Some neighboring tiles, whi
h should ex
hange data are unne
essarily assigned todi�erent SMP nodes.or
tt2 = adjust mod(lS2 , b2m2p2, smp id2b2m2 + cpu id2b2, b2)

tt3 = adjust mod(lS3 , b3m3p3, smp id3b3m3 + cpu id3b3, b3)It
an be in
orporated in the pseudo
ode as indi
ated in Tables 5.4 and 5.7.5.8.2 Evi
ting deadlo
ksIn this se
tion, we shall analyze the problem of deadlo
ks in
ase the Myrinet platform is usedfor the implementation, as in §5.6.1. Similar
onsiderations should be taken when parallelizingin most platforms. Some of them may not imply the use of tokens, however, they will not beable to support an unlimited number of messages to be pending among pro
essors.

5.8 Implementation issues for non-re
tangular tile spa
es 151
Table 5.4: Implementation of the
y
li
 assignment s
hedule when the tile spa
e is notre
tangular

Cyclic Assignment - Non Rectangular Tile SpaceFOREACH CPU with
oordinates (cpu id2, . . . , cpu idn)in SMP node with
oordinates (smp id2, . . . , smp idn) DOFOR (t2 = adjust mod(lS2 , m2 ∗ p2, smp id2 ∗ m2 + cpu id2, 1); t2 ≤ uS
2 ; t2+ = m2 ∗ p2)FOR (t3 = adjust mod(lS3 , m3 ∗ p3, smp id3 ∗ m3 + cpu id3, 1); t3 ≤ uS

3 ; t3+ = m3 ∗ p3)FOR (t1 = lS1 ; t1 ≤ uS
1 ; t1 + +){Exe
ute pre-
omputation part of Communi
ationExe
ute Computation of tile (t1, t2, t3)Exe
ute post-
omputation part of Communi
ation

}where we have assumed that loop bounds lS2 , uS
2 , lS3 , uS

3 , lS1 , uS
1 , have been re
al
ulated, using Fourier MotzkinElimination method [BW95℄, [Ban93℄, so as to be expressed in the order t2, t3, t1

Table 5.5: Implementation of the
luster assignment s
hedule when the tile spa
e is notre
tangular
Cluster Assignment - Non Rectangular Tile SpaceFOREACH CPU with
oordinates (cpu id2, . . . , cpu idn)in SMP node with
oordinates (smp id2, . . . , smp idn) DOFOR (t1 = lS1 ; t1 ≤ uS

1 ; t1 + +){Exe
ute pre-
omputation part of Communi
ationFOR (t2 = max(lS2 , min lS2 + (smp id2 ∗ m2 + cpu id2) ∗ ⌈
max uS

2 −min lS2 +1

m2∗p2
⌉);

t2 ≤ min(uS
2 , min lS2 + (smp id2 ∗ m2 + cpu id2 + 1) ∗ ⌈

max uS
2 −min lS2 +1

m2∗p2
⌉ − 1); t2 + +)FOR (t3 = max(lS3 , min lS3 + (smp id3 ∗ m3 + cpu id3) ∗ ⌈

max uS
3 −min lS3 +1

m3∗p3
⌉;

t3 ≤ min(uS
3 , min lS3 + (smp id3 ∗ m3 + cpu id3 + 1) ∗ ⌈

max uS
3 −min lS3 +1

m3∗p3
⌉ − 1); t3 + +){Exe
ute Computation of tile (t1, t2, t3)

}Exe
ute post-
omputation part of Communi
ation
}wheremin l2 = min(l2(t1)) andmax u2 = max(u2(t1)). Similarly,min l3 = min(l3(t1, t2)) andmax u3 =

max(u3(t1, t2)). These values
an be
al
ulated by applying Fourier Motzkin Elimination method [BW95℄,[Ban93℄ to the tile spa
e boundaries,
onsidering that outermost loop indi
es are t2, t3, respe
tively.

152 S
heduling onto a fixed number of homogeneous SMP nodes
Table 5.6: Implementation of the mirror assignment s
hedule when the tile spa
e is notre
tangular

Mirror Assignment - Non Rectangular Tile SpaceFOREACH CPU with
oordinates (cpu id2, . . . , cpu idn)in SMP node with
oordinates (smp id2, . . . , smp idn) DOFOR (x2 = 0; x2 ≤ ⌈
uS
2 −lS2 +1

m2∗p2
⌉ − 1; x2 + +){

t2 = lS2 + x2 ∗ m2 ∗ p2 + (1 − x2%2) ∗ (smp id2 ∗ m2 + cpu id2)+
+(x2%2) ∗ (m2 ∗ p2 − 1 − smp id2 ∗ m2 − cpu id2);IF (lS2 ≤ t2 ≤ uS

2)FOR (x3 = 0; x3 ≤ ⌈
max uS

3 −min l3+1

m3∗p3
⌉ − 1; x3 + +){

t3 = min l3 + x3 ∗ m3 ∗ p3 + (1 − x3%2) ∗ (smp id3 ∗ m3 + cpu id3)+
+(x3%2) ∗ (m3 ∗ p3 − 1 − smp id3 ∗ m3 − cpu id3);IF (l3 ≤ t3 ≤ uS

3)FOR (t1 = lS1 ; t1 ≤ uS
1 ; t1 + +){Exe
ute pre-
omputation part of Communi
ationExe
ute Computation of tile (t1, t2, t3)Exe
ute post-
omputation part of Communi
ation

}
}

}As in Table 5.4, we have assumed that loop bounds lS2 , uS
2 , lS3 , uS

3 , lS1 , uS
1 , have been re
al
ulated, so as tobe expressed in the order t2, t3, t1.

Table 5.7: Implementation of the blo
k-
y
li
 assignment s
hedule when the tile spa
e isnot re
tangular
Block-Cyclic Assignment - Non Rectangular Tile SpaceFOREACH CPU with
oordinates (cpu id2, . . . , cpu idn)in SMP node with
oordinates (smp id2, . . . , smp idn) DOFOR (tt2 = adjust mod(lS2 , b2 ∗ m2 ∗ p2, smp id2 ∗ b2 ∗ m2 + cpu id2 ∗ b2, b2);
tt2 ≤ uS

2 ; tt2+ = b2 ∗ m2 ∗ p2)FOR (tt3 = adjust mod(llS3 , b3 ∗ m3 ∗ p3, smp id3 ∗ b3 ∗ m3 + cpu id3 ∗ b3, b3);
tt3 ≤ uuS

3 ; tt3+ = b3 ∗ m3 ∗ p3)FOR (t1 = llS1 ; t1 ≤ uuS
1 ; t1 + +){Exe
ute pre-
omputation part of Communi
ationFOR (t2 = max(lS2 , tt2); t2 ≤ min(uS

2 , tt2 + b2 − 1); t2 + +)FOR (t3 = max(lS3 , tt3); t3 ≤ min(uS
3 , tt3 + b3 − 1); t3 + +){if lS1 (t2, t3) ≤ t1 ≤ uS

1 (t2, t3) Exe
ute Computation of tile (t1, t2, t3)
}Exe
ute post-
omputation part of Communi
ation

}As in Table 5.4, we have assumed that loop bounds lS2 , uS
2 , lS3 , uS

3 , lS1 , uS
1 , have been re
al
ulated, so as to beexpressed in the order t2, t3, t1. In addition, bound llS3 (tt2) is
al
ulated by formula giving lS3 (t2), if we repla
e

t2 with tt2, if its multiplying fa
tor is positive, or with tt2 + b2 − 1, if its multiplying fa
tor is negative. Thatis, we repla
e ea
h at2 with max(a, 0)tt2 +min(a, 0)(tt2 + b2 − 1). Similarly, uuS
3 (tt2) is
al
ulated by theformula giving uS

3 (t2), if we repla
e ea
h at2 with min(a, 0)tt2 +max(a, 0)(tt2 + b2 − 1). Limits llS1 (tt2, tt3)and uuS
1 (tt2, tt3) are
al
ulated in the same way.

5.8 Implementation issues for non-re
tangular tile spa
es 153
When using Myrinet-GM [Myr02℄, the re
eive event queue provides 317 tokens per port,254 for re
eive events and 63 for send events. However, when implementing a
y
li
 assignments
hedule (or a blo
k-
y
li
 one), as in Figure 5.17, it is strongly possible that more than 254re
eive events have arrived before the �rst of them is ne
essary for the node to go on with
omputations. In the
ase of a re
tangular tile spa
e, this problem
an be easily
oped with asfollows: Before the
omputation of a tile ea
h CPU may
he
k for pending events, whether itneeds for data in order to go on, or not.

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j1S

j2S
This chunk of tiles will be assigned on the 2
existing SMPs & executed after the first
chunk execution finishes. Thus, notice the
difference between the time steps data are
received and used.

5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9

0

1 2 3 4 5 6 7 8

3
4 5 6 7 8 9 10 11

8

9 10 11 12 13 14 15Figure 5.17: Time distan
e between the arrival of an event and the use of data it
arries.Sin
e the mapping dire
tion of the tile spa
e is too short in this example, only 3 events willremain pending until time step 8, when the exe
ution of the se
ond
hunk of tiles starts in SMPnode 0. The longer dimension jS
1 will be, the more events will be pending.In the
ase of a non-re
tangular tile spa
e, the implementation is not so simple. As shown inFigure 5.18 and argued in the
aption below, deadlo
ks in a non-re
tangular tile spa
e
annotbe
oped with by simply
he
king the event queue before the exe
ution of a tile. In Figure 5.18,CPU 0 of node 1 is stalled.A possible solution of this problem is as follows: When starting the exe
ution of a row oftiles, ea
h thread, whi
h is possible to re
eive data, should
reate an assistant thread. It
he
ksfor pending events in the re
eive event queue and if it �nds one, the event is pro
essed and anew re
eive token is made available. If there are no re
eive events in the queue, the CPU isyielded to the main thread. So, if the assistant thread is useless, as in the
ase of a re
tangulartile spa
e, it will not
onsiderably slow down the exe
ution of the main thread.5.8.3 Simulation DataIn order to study the behavior of the blo
k-
y
li
 assignment s
heme, we have
onstru
ted asimulation program. It really
reates so many threads, as the pro
essors of the
luster are

154 S
heduling onto a fixed number of homogeneous SMP nodes

j3S

j2S

smp 0 - cpu 1

smp 0 - cpu 0

smp 1 - cpu 1

smp 1 - cpu 0

smp 0 - cpu 1

smp 0 - cpu 0

A

B
C

D
E

F

Figure 5.18: Deadlo
ks in the exe
ution of non-re
tangular tile spa
e.In this �gure, the proje
tion of the tile spa
e onto axis plane jS
2 − jS

3 is presented. While CPU1 of SMP node 1 is
omputing the row of tiles labelled as C and �lling in the re
eive bu�ers ofnode 0, CPU 0 of the node 1 is stalling on a barrier between rows B and E. At the same time,the data arriving from the neighboring node 0, due to the
omputation of row A, are likely to�ll in the re
eive bu�ers and use up the re
eive tokens of node 1. However, if the
omputationof row A does not �nish, the
omputation of row F will never start, so as to restore the re
eivetokens needed for row C.supposed to be. It a
ts as if traversing the tile spa
e, but instead of exe
uting
omputations, itadds a time interval to the time previous
omputations have been
omputed and ne
essary datahave arrived. Instead of ex
hanging data, threads ex
hange the time instan
es ea
h tile and itssubsequent
ommuni
ation are supposed to
omplete. Thus, we may experiment with all tilespa
es and with underlying ar
hite
tures that we do not have really available. We may set the
ommuni
ation
hara
teristi
s to resemble any slow or fast network ar
hite
ture.Alternative Dire
tion Impli
it Integration (ADI)First, we experimented with the Alternative Dire
tion Impli
it Integration (ADI) ben
hmark.The
ode segment whi
h implies the main
omputational load and whi
h deserves parallelizationis given by the following nested for-loop:for (t=0; t≤T-1; t++)for (i=0; i≤I-1; i++)for (j=0; j≤J-1; j++){X[t,i,j℄=X[t-1,i,j℄+X[t-1,i,j-1℄*A[i,j℄/B[t-1,i,j-1℄-X[t-1,i-1,j℄*A[i,j℄/B[t-1,i-1,j℄;B[t,i,j℄=B[t-1,i,j℄-A[i,j℄*A[i,j℄/B[t-1,i,j-1℄-A[i,j℄*A[i,j℄/B[t-1,i-1,j℄;
}

5.8 Implementation issues for non-re
tangular tile spa
es 155
The dependen
e matrix of this
ode segment is

D =




1 1 1

0 1 0

0 0 1


One of the optimal tiling matri
es, a

ording to
ommuni
ation minimization
riteria [Xue97a℄,
an be proven to be

P =




10 10 10

0 10 0

0 0 10


After applying this tiling transformation, to the initial
ode segment with I=J=200 and T=1000,the tiled
ode segment
an be rewritten as follows:for (ii=0; ii≤19; ii++)for (jj=0; jj≤19; jj++)for (tt=-2-ii-jj; tt≤99-ii-jj; tt++){Work with tile (tt, ii, jj)

}We simulated the exe
ution of this
ode segment on a
luster with a �xed number of SMPnodes and a �xed number o CPUs inside ea
h node. We tested all possible values of parameters
pi, mi, bi, so as to lo
ate those
hara
teristi
s that give the best performan
e. In the followingdiagrams (Figures 5.19-5.22(b)) we have used the ratio Speedup

Number of Processors Used as an index ofthe eÆ
ien
y of a s
hedule. The maximum value of this fra
tion may theoreti
ally equal to 1.The
loser to 1 ratio Speedup
Number of Processors Used is, the more eÆ
ient the respe
tive s
hedule is
onsidered.In this ben
hmark the number of tiles of ea
h row (ii, jj) is
onstant (equal to 102). Thus,the
omputation load of the algorithm is evenly distributed to pro
essors i� the rows of tiles areevenly distributed. As an indi
ator of load balan
e along dimension i, we have used fun
tion

bali =

{
0 if pimi = 1

(wi − ⌊ wi

pimibi
⌋pimibi)bi elseThe out
ome of this fun
tion is equal to 0 i� the rows of tiles are evenly distributed to pro
essors.As a global indi
ator of load balan
e, we have used fun
tion

bal =
∑

baliAs dedu
ed from Figure 5.19, load balan
e is ne
essary and suÆ
ient for a
hieving the opti-mal performan
e when we a�ord just one SMP node. Otherwise, as dedu
es from Figures 5.20(a),

156 S
heduling onto a fixed number of homogeneous SMP nodes
1 SMP node with 2 CPUs

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

1 SMP node with 4 CPUs

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

1 SMP node with 8 CPUs

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60 70 80

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

1 SMP node with 10 CPUs

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60 70

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

Figure 5.19: Simulation Data: Exe
ution of ADI onto a shared memory multipro
essor.Ratio Speedup
Number of Processors Used

is plotted as a fun
tion of an index indi
ating load balan
e. Theoptimal performan
e is a
hieved when this index indi
ates a perfe
t load balan
e.5.21(a), 5.22(a), 5.23(a), 5.24(a), 5.25(a), load balan
e is ne
essary, but not suÆ
ient for a
hiev-ing the optimal speedup.In order to model the data transfer load along dimension i, we have used fun
tion
commi = −1 +

{
1 if pi = 1

⌈ wi

pimibi
⌉ elseThe total
ommuni
ation load is modelled by fun
tion

comm =
∑

(commi

∏

j 6=i

wj)It
an be easily dedu
ed from Figures 5.23(b), 5.24(b), 5.25(b) that, when the non-overlappingexe
ution poli
y is followed, it is ne
essary to minimize the
ommuni
ation load, in order toa
hieve the optimal speedup. When the overlapping exe
ution poli
y is followed, we did notnoti
e su
h a relation between
ommuni
ation load and speedup.In Figures 5.20(b), 5.21(b), 5.22(b), 5.23(
), 5.24(
), 5.25(
), we have used value 0 for thehorizontal axis when both load balan
e and
ommuni
ation indi
es equal to 0 and value 1

5.8 Implementation issues for non-re
tangular tile spa
es 157
2 SMP nodes with 1 CPU each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs
2 SMP nodes with 8 CPUs each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

(a) A perfe
t load balan
e is ne
essary, but not suÆ
ient for a
hieving the optimal speedup.
2 SMP nodes with 1 CPUs - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee
du

p /
 pr

oc
es
so

rs

2 SMP nodes with 8 CPUs - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee
du

p /
 pr

oc
es
so

rs

(b) The optimal speedup is a
hieved when the
omputation load is evenly distributed among pro
essors andthe
ommuni
ation load is minimized.Figure 5.20: Simulation Data: Exe
ution of ADI onto a
luster of 2 SMP nodes, followingthe overlapping exe
ution poli
y
otherwise. We
on
lude that almost always the speedup is optimal when both load balan
eand
ommuni
ation
riteria are ful�lled. This holds even for the overlapping exe
ution poli
y,although we did not �nd out a dire
t dependen
e between
ommuni
ation load and speedup.In Tables 5.8-5.9, we have indi
ated the maximum values of ratio Speedup

Number of Processors Usedalong with the virtual grid
on�guration and the blo
king parameters used. Noti
e that, fora non negligible value of the time needed for syn
hronization and overlapped
ommuni
ation,the blo
king parameters and grid
on�guration, that give the optimal performan
e are almostidenti
al for both the overlapping and the non-overlapping exe
ution poli
ies. In su
h re
tangulartile spa
es, we should use the
luster assignment s
heme, at least along dimensions with morethan one SMP nodes. In
omparison to the simulations
ondu
ted in §5.6.3, noti
e that now wehave used a non negligible value for the times needed for syn
hronization and for the initializationof
ommuni
ation, so as to predi
t the performan
e of slower than Myrinet inter
onne
tionte
hnologies.

158 S
heduling onto a fixed number of homogeneous SMP nodes
4 SMP nodes with 1 CPU each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

4 SMP nodes with 4 CPUs each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120

Index of load balance

S
p

e
e
d

u
p

 /
 p

ro
c

e
s

s
o

rs

(a)
4 SMP nodes with 1 CPU - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee
du

p /
 pr

oc
es
so

rs

4 SMP nodes with 4 CPUs -Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee
du

p /
 pr

oc
es
so

rs

(b)Figure 5.21: Simulation Data: Exe
ution of ADI onto a
luster of 4 SMP nodes, followingthe overlapping exe
ution poli
yTable 5.8: ADI - Simulation DataThe maximum values of ratio (Speedup)/(Number of Processors Used) are a
hieved whenthe
luster assignment s
heme is followed.
p2 p3 m2 m3 b2 b3 Speedup/pro
essors1 SMP × 2 CPUs 1 1 1 2 20 10 0.999961 1 2 2 10 10 0.999871 SMP × 4 CPUs 1 1 1 4 20 5 0.999851 1 4 1 5 20 0.999851 1 2 4 10 5 0.999601 SMP × 8 CPUs 1 1 4 2 5 10 0.999601 1 2 4 5 5 0.999101 1 4 2 5 5 0.999101 1 1 10 20 2 0.999631 SMP × 10 CPUs 1 1 10 1 2 20 0.999631 1 2 5 10 4 0.999501 1 5 2 4 10 0.99950Gauss Su

essive Over-Relaxation (SOR)In the sequel, we experimented with the Gauss Su

essive Over-Relaxation (SOR) ben
hmark.The
ode segment whi
h implies the main
omputational load and whi
h deserves parallelization

5.8 Implementation issues for non-re
tangular tile spa
es 159
8 SMP nodes with 1 CPU each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60 70 80
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs
8 SMP nodes with 2 CPUs each - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

(a)
8 SMP nodes with 1 CPU - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee
du

p /
 pr

oc
es
so

rs

8 SMP nodes with 2 CPUs - Overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee
du

p /
 pr

oc
es
so

rs

(b)Figure 5.22: Simulation Data: Exe
ution of ADI onto a
luster of 8 SMP nodes, followingthe overlapping exe
ution poli
yis given by the following nested for-loop:for (t=0; t≤T-1; t++)for (i=0; i≤I-1; i++)for (j=0; j≤J-1; j++){A[t,i,j℄=w
4 (A[t,i-1,j℄+A[t,i,j-1℄+A[t-1,i+1,j℄+A[t-1,i,j+1℄)+
(1 − w)A[t-1,i,j℄

}The dependen
e matrix of this
ode segment is
D =




1 0 0 1 1

0 1 0 −1 0

0 0 1 0 −1


One of the optimal tiling matri
es, a

ording to
ommuni
ation minimization
riteria [Xue97a℄,
an be proven to be

P =




10 10 −10

−10 0 10

0 −10 10




160 S
heduling onto a fixed number of homogeneous SMP nodes
2 SMP nodes with 1 CPU - Non overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

2 SMP nodes with 8 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

(a) A perfe
t load balan
e is ne
essary, but not suÆ
ient for a
hieving the optimal speedup.
2 SMP nodes with 1 CPU - Non overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120 140 160 180 200
inter-node communication volume

Sp
ee
du

p /
 pr

oc
es
so

rs

2 SMP nodes with 8 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120 140 160 180 200
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(b) The minimization of the
ommuni
ation load is ne
essary, but not suÆ
ient for a
hieving the optimalspeedup.
2 SMP nodes with 1 CPU - Non overlapping execution

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee
du

p /
 pr

oc
es
so

rs

2 SMP nodes with 8 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(
) The optimal speedup is a
hieved when the
omputation load is evenly distributed among pro
essors andthe
ommuni
ation load is minimized.Figure 5.23: Simulation Data: Exe
ution of ADI onto a
luster of 2 SMP nodes, followingthe non-overlapping exe
ution poli
yAfter applying this tiling transformation, to the initial
ode segment with I=J=200 and T=1000,the tiled
ode segment
an be rewritten as follows:for (ii=0; ii≤119; ii++)for (jj=ii; jj≤ii+20; jj++)for (tt=max(0, jj-20, -ii+jj-1); tt≤min(119, jj, -ii+jj+100); tt++){Work with tile (tt, ii, jj)
}

5.8 Implementation issues for non-re
tangular tile spa
es 161
4 SMP nodes with 1 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs
4 SMP nodes with 4 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

(a)
4 SMP node with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250 300 350 400
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

4 SMP nodes with 4 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(b)
4 SMP nodes with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

4 SMP nodes with 4 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(
)Figure 5.24: Simulation Data: Exe
ution of ADI onto a
luster of 4 SMP nodes, followingthe non-overlapping exe
ution poli
yAs in the
ase of the ADI ben
hmark, we simulated the exe
ution of this
ode segment ona
luster with a �xed number of SMP nodes and a �xed number o CPUs inside ea
h node. Wetested all possible values of parameters pi, mi, bi, so as to lo
ate the
on�guration that gives thebest performan
e. In Tables 5.10, 5.11, 5.12 we have used the ratio Speedup
Number of Processors Used asan index of the eÆ
ien
y of a s
hedule. The maximum value of this fra
tion may theoreti
allyequal to 1. The
loser to 1 ratio Speedup

Number of Processors Used is, the more eÆ
ient the respe
tives
hedule is
onsidered.For ea
h
luster size, we have denoted the
on�guration that gives the best performan
e.Then, we have indi
ated the optimal
y
li

on�guration and the optimal
luster
on�guration.

162 S
heduling onto a fixed number of homogeneous SMP nodes
8 SMP nodes with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

8 SMP nodes with 2 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120
Index of load balance

Sp
ee

du
p /

 pr
oc

es
so

rs

(a)
8 SMP nodes with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250 300
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

8 SMP nodes with 2 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250
inter-node communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(b)
8 SMP nodes with 1 CPU - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

8 SMP nodes with 2 CPUs - Non overlapping execution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1 1,2
index of load balance + communication volume

Sp
ee

du
p /

 pr
oc

es
so

rs

(
)Figure 5.25: Simulation Data: Exe
ution of ADI onto a
luster of 8 SMP nodes, followingthe non-overlapping exe
ution poli
yIn the last
olumn of Tables 5.10, 5.11, 5.12 we have indi
ated the per
ent redu
tion in eÆ
ien
yof the
y
li
 or
luster s
hedule, in
omparison to the optimal blo
k-
y
li
 s
hedule.One
an easily dedu
e that for su
h a non-re
tangular tile spa
e, the
luster assignments
hedule is totally out of a question. This is due to the fa
t that when a pro
essor starts exe
utingthe tiles assigned to it, the pro
essors that have previously started exe
uting
omputations, havealmost �nished with them. Thus, the exe
ution of the tile spa
e is almost not parallelized.On the other hand, when the overlapping exe
ution poli
y is followed, the
y
li
 assignments
hedule
an a
hieve an almost optimal performan
e, as dedu
ed from Table 5.11. When thenon-overlapping exe
ution s
heme is followed, the
y
li
 assignment s
hedule may be up to 26%

5.8 Implementation issues for non-re
tangular tile spa
es 163
Table 5.9: ADI - Simulation DataThe maximum values of ratio (Speedup)/(Number of Processors Used) are a
hieved whenthe
luster assignment s
heme is followed, at least along dimensions with more than one SMPnodes. Speedup/pro
essors

p2 p3 m2 m3 b2 b3 Non-overlapping Overlapping1 2 1 1 1 10 0.976 0.9982 SMPs × 1 CPU 2 1 1 1 10 1 0.976 0.9981 2 1 1 2 10 0.976 0.9982 1 1 1 10 2 0.976 0.9981 2 2 1 2 10 0.975 0.9972 SMPs × 2 CPUs 2 1 1 2 10 2 0.975 0.9971 2 2 1 5 10 0.975 0.9972 1 1 2 10 5 0.975 0.9971 2 4 1 5 10 0.975 0.9972 SMPs × 4 CPUs 2 1 1 4 10 5 0.975 0.9971 2 4 1 1 10 0.975 0.9962 1 1 4 10 1 0.975 0.9961 2 4 2 5 5 0.950 0.9942 SMPs × 8 CPUs 2 1 2 4 5 5 0.950 0.9941 2 4 2 1 5 0.949 0.9912 1 2 4 5 1 0.949 0.9912 2 1 1 10 10 0.949 0.9911 4 1 1 1 5 0.91 0.994 1 1 1 5 1 0.91 0.994 SMPs × 1 CPU 1 4 1 1 2 5 0.909 0.994 1 1 1 5 2 0.909 0.991 4 1 1 4 5 0.907 0.9894 1 1 1 5 4 0.907 0.9892 2 1 2 10 5 0.926 0.994 SMPs × 2 CPUs 2 2 2 1 5 10 0.926 0.991 4 2 1 2 5 0.908 0.9894 1 1 2 5 2 0.908 0.9891 4 4 1 1 5 0.908 0.9884 1 1 4 5 1 0.908 0.9884 SMPs × 4 CPUs 1 4 4 1 5 5 0.906 0.9882 2 2 2 5 5 0.906 0.9884 1 1 4 5 5 0.906 0.9882 4 1 1 10 5 0.882 0.9834 2 1 1 5 10 0.882 0.9838 SMPs × 1 CPU 2 4 1 1 5 5 0.847 0.9794 2 1 1 5 5 0.847 0.9792 4 1 1 2 5 0.751 0.9644 2 1 1 5 2 0.751 0.9648 SMPs × 2 CPUs 2 4 2 1 5 5 0.866 0.9824 2 1 2 5 5 0.866 0.982

164 S
heduling onto a fixed number of homogeneous SMP nodes
Table 5.10: SOR - Simulation Data

p2 p3 m2 m3 b2 b3 Speedup/pro
essors EÆ
ien
y redu
tion1 1 1 2 120 5 0.9994212711 SMP × 2 CPUs 1 1 2 1 1 1 0.988251853 1.2%1 1 2 1 60 140 0.534139023 47%1 1 4 1 1 140 0.9979856911 SMP × 4 CPUs 1 1 4 1 1 1 0.987554938 1%1 1 4 1 30 140 0.309307308 69%1 1 8 1 1 140 0.9891665341 SMP × 8 CPUs 1 1 8 1 1 1 0.978837276 1%1 1 8 1 15 140 0.216077827 78%1 1 10 1 1 10 0.9809115491 SMP × 10 CPUs 1 1 10 1 1 1 0.971447503 1%1 1 10 1 12 140 0.198010851 80%Table 5.11: SOR - Simulation Data, following the overlapping exe
ution poli
y
p2 p3 m2 m3 b2 b3 Speedup/pro
essors EÆ
ien
y redu
tion2 1 1 1 5 1 0.9877455752 SMPs × 1 CPU 2 1 1 1 1 1 0.954850866 3.3%2 1 1 1 60 140 0.53174481 46%2 1 1 2 6 1 0.9847241652 SMPs × 2 CPUs 2 1 2 1 1 1 0.970604098 1.4%2 1 2 1 30 140 0.308091238 69%2 1 2 2 2 1 0.9720119022 SMPs × 4 CPUs 2 1 4 1 1 1 0.962034972 1%2 1 4 1 15 140 0.215110584 78%2 1 2 4 3 1 0.9235224672 SMPs × 8 CPUs 2 1 4 2 1 1 0.910115457 1.5%2 1 8 1 8 140 0.166069888 82%4 1 1 1 2 1 0.9705757744 SMPs × 1 CPU 4 1 1 1 1 1 0.954196445 1.7%4 1 1 1 30 140 0.305305101 69%4 1 1 2 2 1 0.9637002664 SMPs × 2 CPUs 4 1 2 1 1 1 0.961991687 0.18%4 1 2 1 15 140 0.213112999 78%4 1 1 4 3 1 0.9184727584 SMPs × 4 CPUs 4 1 2 2 1 1 0.910052738 0.92%4 1 4 1 8 140 0.164702948 82%8 1 1 1 1 1 0.9457609278 SMPs × 1 CPU 8 1 1 1 1 1 0.945760927 0%8 1 1 1 15 140 0.208689671 78%8 1 1 2 2 1 0.8959679458 SMPs × 2 CPUs 8 1 1 2 1 1 0.895508695 0.05%8 1 2 1 8 140 0.161913245 82%slower than the blo
k-
y
li
 assignment s
hedule. This is due to the fa
t that it imposes a very

5.8 Implementation issues for non-re
tangular tile spa
es 165
Table 5.12: SOR - Simulation Data, following the non-overlapping exe
ution poli
y

p2 p3 m2 m3 b2 b3 Speedup/pro
essors EÆ
ien
y redu
tion2 1 1 1 8 1 0.9334719332 SMPs × 1 CPU 1 2 1 1 1 1 0.687822177 26%1 2 1 1 120 70 0.516923785 45%2 1 1 2 8 1 0.9314154612 SMPs × 2 CPUs 2 1 2 1 1 1 0.804743867 14%2 1 2 1 30 140 0.297544003 68%2 1 1 4 9 1 0.9153420712 SMPs × 4 CPUs 2 1 4 1 1 1 0.797715939 13%2 1 4 1 15 140 0.206804037 77%2 1 2 4 4 1 0.8728208642 SMPs × 8 CPUs 2 1 4 2 1 1 0.761663718 13%2 1 8 1 8 140 0.159950583 82%4 1 1 1 4 1 0.8524776914 SMPs × 1 CPU 4 1 1 1 1 1 0.678914342 20%1 4 1 1 120 35 0.276955342 68%4 1 1 2 4 1 0.8477144284 SMPs × 2 CPUs 4 1 2 1 1 1 0.797329214 5.9%4 1 2 1 15 140 0.18935053 78%4 1 1 4 4 1 0.8322397444 SMPs × 4 CPUs 4 1 2 2 1 1 0.761153699 8.5%4 1 4 1 8 140 0.146127364 82%4 2 1 1 4 4 0.7654800878 SMPs × 1 CPU 8 1 1 1 1 1 0.672901118 12%8 1 1 1 15 140 0.164661875 78%8 1 1 2 2 1 0.7425095838 SMPs × 2 CPUs 8 1 2 1 1 1 0.731556309 1.5%8 1 2 1 8 140 0.130694603 82%dense
ommuni
ation pattern. Thus, the blo
k-
y
li
 assignment s
heme a
hieves the happymedium between
ommuni
ation load and
on
urrent exe
ution on di�erent pro
essors.

166 S
heduling onto a fixed number of homogeneous SMP nodes

6Con
lusionIn this thesis, we have added some notions to the diÆ
ult problem of automati
 parallelizationof nested for-loops.In [GAK03℄, [GDAK02a℄, [GDAK04℄, a
omplete framework for automati
ally produ
ingparallel SPMD
ode has been presented. However, we assumed that there are always as manypro
essors as needed, or, that pro
esses are s
heduled by the operating system on the availablepro
essors. However, as explained in §5.1, this s
heduling may not be optimal. Chapter 5 of thisthesis is now presenting a solution to this problem. In addition, we had not taken into a

ountmulti-level parallel ar
hite
tures. This
ase is
oped with by Chapter 4 and §3.3 of this thesis.In [Sot04℄, Sotiropoulos has presented an innovating parallel s
heduling, whi
h
an exploitadvan
ed
ommuni
ation features of modern
lusters, su
h as Dire
t Memory A

essing andZero-Copy proto
ols [KSG03℄, [GSK01℄. This thesis is now modifying the s
hedule proposed bySotiropoulos, in order to exploit the proximity of pro
essors within the same SMP node.Thus, this thesis
an be
onsidered as the last among realized steps for the parallelization ofnested for-loops:1. First of all, one should
ondu
t a dependen
e analysis of the
ode segment, as des
ribedin [Ban88℄, [Pug92℄. We assume that this step gives uniform dependen
es, as des
ribed in
§2.3 and in §B.2.2. Then, we sele
t the optimal tiling, a

ording to
a
he lo
ality or
ommuni
ation overheadminimization
riteria, as des
ribed in [KRC99℄, [LRW91℄, [WL91a℄, [PHP03℄, [MHCF98℄and [AKN95℄, [RR02℄, [BDRR94℄, [Xue97a℄, [Xue00℄, [RR04℄.3. Sequential
ode is
onverted to serial tiled
ode, a

ording to the tiling transformationsele
ted in step 2, as des
ribed in [GAK02b℄, [GAK03℄ and in §3.2 of this thesis. This
onversion is
onsisted of two substeps:

168 Con
lusion
(a) Produ
ing the bounds of the tile spa
e from the bounds of the iteration spa
e (§3.2.1)and(b) Produ
ing the appropriate boundary expressions for traversing the internal of ea
htile, as well as determining the in
remental steps of ea
h loop index (§3.2.2).4. A
ommuni
ation poli
y (overlapping or non-overlapping) may be sele
ted [GSK01℄, [KSG03℄,a

ording to the hardware te
hnology that will be used. If the network inter
onne
tionsupports Dire
t Memory A

ess (DMA) proto
ols, we highly re
ommend the sele
tion ofthe overlapping
ommuni
ation poli
y. If DMA is not supported by hardware, then over-lapping
ommuni
ation will not be really implemented. Thus, writing
ode for overlapping
ommuni
ation over this hardware ar
hite
ture will only introdu
e unne
essary delays tothe �nal program.5. If our
luster is
onsisted by Symmetri
 Multipro
essors (SMPs), then the proximity ofpro
essors in the same SMP node
an be exploited by applying a grouping transformationto the tile spa
e, produ
ed in step 3a, and then s
heduling groups instead of tiles, asdes
ribed in [ASTK02b℄, [AST+05℄ and in Chapter 4 of this thesis.6. If the number of rows of tiles produ
ed by step 3a ex
eeds the number of CPUs available,then it is advised to apply a stati
 s
heduling of tiles or groups, as des
ribed in [AKK04℄and in Chapter 5 of this thesis. If the tile spa
e (step 3a) is re
tangular, then we need nottake into a

ount load balan
ing issues. Thus, we may sele
t between the
y
li
 assignments
hedule (§5.2) and the
luster assignment s
hedule (§5.4). The
y
li
 assignment s
heduleis preferable when the overlapping
ommuni
ation poli
y has been sele
ted in step 4, while
luster assignment s
hedule is preferable when the non-overlapping
ommuni
ation poli
yhas been sele
ted. If the tile spa
e is not re
tangular, then the blo
k-
y
li
 assignments
hedule
onstitutes a useful
ompromise of the advantages and disadvantages of
y
li
and
luster assignment s
hedules.7. Finally, serial tiled
ode, produ
ed in step 3,
an be
onverted into parallel
ode, takinginto a

ount the de
isions of steps 4, 5, 6, and allo
ating data to pro
esses, as des
ribedin [GDAK02a℄, [Gou03℄ and in §3.3 of this thesis.Although a lot of resear
h has been
ondu
ted in this area, we
annot yet automati
allyprodu
e optimal parallel tiled
ode for the exe
ution of
ode segments with nested for-loopsonto parallel ar
hite
tures.

• First of all, we have not yet investigated the intera
tion among the tile sele
tion te
hniques(step 2) and subsequent steps (4, 5, 6). It is strongly possible that the appli
ation ofdi�erent
ommuni
ation poli
ies or assignment s
hemes will modify the
riteria for thesele
tion of the optimal tiling transformation. Thus, maybe an overall analysis of problems
orresponding to steps 2, 4, 5 and 6 would modify the �nal parallel
ode produ
ed in step 7.

169
• In addition, we may in
orporate in the previous pro
edure the data layout and indexingte
hniques des
ribed in [AK04℄, [AKT05℄. In these papers, E. Athanasaki et al. havepresented an alternative array data layout, whi
h stores array elements in memory in theorder they are fet
hed in
a
he by the tiled nested for-loop
ode segment. Then, the
ombination of parallelization and peak
a
he performan
e is expe
ted to further boostthe eÆ
ien
y of the �nal parallel
ode. However, in
orporating these te
hniques, will addone more parameter in the tile sele
tion methods applied in step 2.
• Another issue that has not been yet investigated is false sharing inside SMP nodes ([CS99℄,pages 123-156, [TLH94℄, [KCRB03℄). Is there su
h a possibility? How
an it be evi
ted?Sin
e tiling has initially been designed for parallelization onto
lusters with distributedmemory, or for exploiting
a
he lo
ality on single pro
essing units, these questions havenot been yet addressed in the literature.
• Furthermore, one should �nd out if these te
hniques
an be applied to
ode segments withimperfe
tly nested for-loops. As des
ribed in [AMP00b℄, [AMP00a℄, [Xue96℄, [SL99℄,[Kul98℄, [LLL01℄, every imperfe
tly nested for-loop
an be
onverted into perfe
tly nestedfor-loop, using if statements. However, the te
hniques des
ribed in the above papers aremainly aimed for
a
he lo
ality optimization, not for parallelism. The
omputation load ofiterations will not be equal. Thus, tiling into equal sized tiles will result into
omputationload imbalan
e. On the other hand, the results of this thesis and of referen
ed relatedwork have been based on the assumptions that tiles are identi
al.
• Similarly, if the
omputing system is heterogeneous, tiling into identi
al tiles will notgive equal
omputation times for all of them. This fa
t will not be
onsistent with theunderlying assumptions of this thesis and of referen
ed related work. Then, the te
hniquespresented in this thesis might be
ombined or enhan
ed with the ones proposed in [Mor98℄,[KP96℄, [CZL95℄, [CZL97℄. However, the methods proposed by above papers
annot repla
ethe s
hemes proposed in this thesis, sin
e, they
on
ern the parallelization of doall loops([CZL95℄, [CZL97℄), or employ a dynami
 s
heduling algorithm ([KP96℄).
• In order to further redu
e the exe
ution time of parallel programs on SMP nodes, weshould also query whi
h CPUs of an SMP node should
ommuni
ate with other SMPnodes. Should ea
h CPU ex
hange data that
on
ern only its own work? Or should asingle pro
essor undertake the
ommuni
ation needed for the whole SMP node? In
asethe se
ond possibility is taken, how shall we balan
e the
omputation+
ommuni
ationload of CPUs?

170 Con
lusion

Appendi
es

ASummary of Notations
Symbol Explanation Page

N set of natural numbers 12
N∗ set of natural numbers, ex
luding 0, N∗ = N − {0} 12
Z set of integer numbers 12
Z∗ set of integer numbers, ex
luding 0, Z∗ = Z − {0} 12
n Dimensions of the iteration spa
e 12
Jn Iteration spa
e 13

~j = (j1, . . . , jn) Iteration
oordinates ve
tor 12
JS Tile spa
e 30

~jS = (jS
1 , . . . , j

S
n) Tile
oordinates ve
tor: ~jS = ⌊H~j⌋ 30

TOS Tile origin spa
e 30
~j0 = (j01, . . . , j0n) Tile origin 30

TIS Tile iteration spa
e 30
TTIS Transformed tile iteration spa
e 59

~j′ = (j′1, . . . , j
′
n) Instan
e of the transformed tile iteration spa
e 63

~j′ = H ′(~j − ~j0) ⇔ ~j = P ′(V ~jS + ~j′)

DS Data spa
e DS = {fw(~j)|~j ∈ Jn} 75
LDS Lo
al data spa
e 78

LDS =

{
~j′′ ∈ Zn|

0 ≤ j′′k < offk +mkvkk/h̃′kk, k = 1, . . . , n, k 6= i

∧0 ≤ j′′i < offi + |t|vii/h̃′ii

}

~j′′ = (j′′1 , . . . , j
′′
n) Instan
e of the lo
al data spa
e ~j′′ = map(~j′, t) 78

JG Group spa
e 90
~jG = (jG

1 , . . . , j
G
n) Group
oordinates ve
tor ~jG = ⌊HG ~jS⌋ 90

174 Summary of Notations
Symbol Explanation Page

H Tiling matrix 28
g Smallest natural number su
h that gH is an integer matrix 31
P Inverse tiling matrix 28
V Diagonal matrix with vkk the smallest integer su
h that 61

vkk
~hk to be integral

H ′ Transformation matrix from TIS to TTIS (H ′ = V H) 59
P ′ Transformation matrix from TTIS to TIS (P ′ = H ′−1) 59
H̃ ′ Hermite normal form of matrix H ′ 61
HG Grouping matrix 90
PG Inverse grouping matrix 90
D Dependen
e matrix 16
D′ Transformed dependen
e matrix D′ = H ′D

DS Tile dependen
e matrix 32
Π Linear time s
heduling ve
tor 19
ΠG Linear time s
heduling ve
tor
on
erning groups 98

m = m1 × · · · ×mi−1× Number of CPUs inside an SMP node 75, 93
×mi+1 × · · · ×mn

p = p1 × · · · × pi−1× Number of available SMP nodes 127
×pi+1 × · · · × pn

~smp id SMP node identi�
ation ve
tor 75
~cpu id pro
essor identi�
ation ve
tor inside an SMP node 75
~pid global pro
essor identi�
ation ve
tor 75

pidx = pidx = cpu idx + smp idxmx ⇔

cpu idx = pidx%mx, smp idx = ⌊pidx/mx⌋

℘ Makespan = Number of time steps needed for the
ompletion 20of the exe
ution
i The longest dimension of the tile spa
e 76, 108

lk, uk Lower and upper bounds of the iteration spa
e k = 1, . . . , n 12
lSk , uS

k Lower and upper bounds of the tile spa
e k = 1, . . . , n 30
wS

k Width of a re
tangular tile spa
e along dimension k, 101
ws

k = us
k − lSk + 1, k = 1, . . . , n

BAlgorithmi
 Model - Summary ofassumptions
B.1: We
onsider an n-dimensional perfe
tly nested for-loop:for (j1=l1; j1 ≤ u1; j1 + +){...for (jn=ln; jn ≤ un; jn + +){Loop Body

}...
}where l1 and u1 are integer parameters, lk and uk (k = 2, . . . , n) are fun
tions of the outer loopindi
es. Spe
i�
ally, they may have the form:

lk = max(⌈fk1(j1, . . . , jk−1)⌉, . . . , ⌈fkr(j1, . . . , jk−1)⌉)and
uk = min(⌊gk1(j1, . . . , jk−1)⌋, . . . , ⌊gkr(j1, . . . , jk−1)⌋),where fki and gki are aÆne fun
tions. (see page 12)B.2: All dependen
e ve
tors are uniform, i.e. independent of the indi
es of
omputations. (seepage 16)B.3: There are at least n linearly independent dependen
e ve
tors. Thus, the
lass of depen-

176 Algorithmi
 Model - Summary of assumptions
den
e matrix D equals to n. (see page 29)B.4: Anti-dependen
es and output dependen
es have been eliminated using more variables[CDRV98℄. (see page 16)B.5: All dependen
e ve
tors are smaller than the tile size, thus they are entirely
ontained inea
h tile's area. This means that the tile dependen
e matrix DS
ontains only 0's and 1's. (seepage 33)B.6: The pro
essing ar
hite
ture
onsists of an homogeneous
luster of single CPU or SMPnodes. (see page 75)

CSimple Mathemati
al FormulasLemma C.1 If all n points ~yi, i = 1, . . . , n belong to a
onvex spa
e Jn, then every point
~y = a1 ~y1 + · · · + an ~yn (C.1)where ai ∈ [0, 1] and a1 + · · · + an = 1, belongs to Jn.Geometri
ally, this statement
an be expressed as follows: If all points ~yi, i = 1, . . . , n belongto a
onvex spa
e Jn, then all points lo
ated among them belong to Jn.Proof: If all points ~yi, i = 1, . . . , n belong to Jn, then it holds B~yi ≤ ~b for all i = 1, . . . , n.Consequently, B~y =

n∑
i=1

aiB~yi ≤
n∑

i=1

ai
~b = ~b. Thus, point ~y also belongs to Jn. ⊣Lemma C.2 Fun
tion

f(x1, . . . , xn) = x1 + · · · + xn,where x1 × · · · × xn = c and x1, . . . , xn > 0, is minimized when
x1 = · · · = xn = c

1
nProof: Fun
tion

f(x1, . . . , xn) = x1 + · · · + xn,where x1 × · · · × xn = c⇒ xn = c
x1×···×xn−1

,
an be rewritten as follows:
f(x1, . . . , xn−1) = x1 + · · · + xn−1 +

c

x1 × · · · × xn−1
.Therefore ∂f

∂xn−1
= 1 − c

x1×···×xn−2
x−2

n−1 and ∂2f

∂x2
n−1

> 0, ∀xn−1.

178 Simple Mathemati
al Formulas
Thus, fun
tion f(x1, . . . , xn−1) is minimized in respe
t to the value of xn−1 when ∂f

∂xn−1
=

0 ⇒ xn−1 =
(

c
x1×···×xn−2

) 1
2 . For this value of xn−1 we
an write:

f(x1, . . . , xn−2) = x1 + · · · + xn−2 + 2

(
c

x1 × · · · × xn−2

) 1
2

.After we have eliminated variables xn−i+1, . . . , xn this way, we
on
lude that fun
tion f
an be expressed as
f(x1, . . . , xn−i) = x1 + · · · + xn−i + i

(
c

x1 × · · · × xn−i

) 1
i

.Therefore ∂f
∂xn−i

= 1 −
(

c
x1×···×xn−i−1

) 1
i

x
− i+1

i

n−i and ∂2f

∂x2
n−i

> 0, ∀xn−i. Thus, fun
tion
f(x1, . . . , xn−i) is minimized in respe
t to the value of xn−i when ∂f

∂xn−i
= 0 ⇒ xn−i =

(
c

x1×···×xn−i−1

) 1
i+1 . For this value of xn−i we
an write that

f(x1, . . . , xn−i−1) = x1 + · · · + xn−i−1 + (i+ 1)

(
c

x1 × · · · × xn−i−1

) 1
i+1

.If we
ontinue the elimination of the variables in this way, we
on
lude that the mini-mization of f is a
hieved when x1 = c
1
n . After a ba
kwards substitution of the variables inthe expressions xn−i =

(
c

x1×···×xn−i−1

) 1
i+1 we
on
lude that the minimum value of

f(x1, . . . , xn) = x1 + · · · + xnis a
hieved when x1 = · · · = xn = c
1
n . ⊣Lemma C.3 Fun
tion

f(x1, . . . , xn) =
a1

x1
+ · · · +

an

xn
,where x1×· · ·×xn = c, a1, . . . , an are positive
onstants and x1, . . . , xn are positive, is minimizedwhen

xi = ai

(
c

a1 × · · · × an

) 1
n

, i = 1, . . . , nProof: It holds that a1

x1
× · · · × an

xn
= a1×···×an

c
=
onstant. Thus, a

ording to Lemma C.2,fun
tion f(x1, . . . , xn) is minimized when a1

x1
= · · · = an

xn
=
(

a1×···×an

c

) 1
n ⇒ xi = ai

(
c

a1×···×an

) 1
n ,

i = 1, . . . , n. ⊣Lemma C.4 If a ∈ Z and b, c ∈ N∗, it holds that
⌈
⌈a

b ⌉

c
⌉ = ⌈

a

bc
⌉ (C.2)

179
and

⌊
⌊a

b ⌋

c
⌋ = ⌊

a

bc
⌋ (C.3)Proof: There is a pair of x ∈ Z, y ∈ N su
h that a = bcx− y and 0 ≤ y ≤ bc− 1. Thus,it holds that

⌈
a

bc
⌉ = ⌈

bcx− y

bc
⌉ = xIn addition, there is a pair of y1, y2 ∈ N su
h that y = by1 + y2 and 0 ≤ y1 ≤ c − 1,

0 ≤ y2 ≤ b− 1. Thus, it holds that
⌈
⌈a

b
⌉

c
⌉ = ⌈

⌈ bcx−by1−y2

b
⌉

c
⌉ = ⌈

cx− y1
c

⌉ = xThus, formula (C.2) is valid.Similarly, there is a pair of w ∈ Z, z ∈ N su
h that a = bcw + z and 0 ≤ z ≤ bc − 1.Thus, it holds that
⌊
a

bc
⌋ = ⌊

bcw + z

bc
⌋ = wIn addition, there is a pair of z1, z2 ∈ N su
h that z = bz1 + z2 and 0 ≤ z1 ≤ c − 1,

0 ≤ z2 ≤ b− 1. Thus, it holds that
⌊
⌊a

b
⌋

c
⌋ = ⌊

⌊ bcw+bz1+z2

b
⌋

c
⌋ = ⌊

cw + z1
c

⌋ = wThus, formula (C.3) is valid. ⊣Lemma C.5 If a ∈ Z and b ∈ N∗, it holds that
⌊
a− 1

b
⌋ = ⌈

a

b
⌉ − 1 (C.4)Proof: There is a pair of x ∈ Z, y ∈ N su
h that a = bx− y and 0 ≤ y ≤ b− 1. Thus, itholds that

⌈
a

b
⌉ − 1 = ⌈

bx− y

b
⌉ − 1 = x− 1In addition, sin
e 0 ≤ b− y − 1 ≤ b− 1, it holds that

⌊
a− 1

b
⌋ = ⌊

bx− y − 1

b
⌋ = ⌊

b(x− 1) + (b− y − 1))

b
⌋ = x− 1

⊣Lemma C.6 If a ∈ Z and b ∈ N∗, it holds that
−⌊

a

b
⌋ = ⌈−

a

b
⌉ (C.5)

180 Simple Mathemati
al Formulas
Proof: There is a pair of x ∈ Z, y ∈ N su
h that a = bx+ y and 0 ≤ y ≤ b− 1. Thus, itholds that

−⌊
a

b
⌋ = −⌊

bx+ y

b
⌋ = −xIn addition, it holds that

⌈−
a

b
⌉ = ⌈

−bx− y

b
⌉ = −x

⊣Lemma C.7 If a, b ∈ N∗, it holds that
⌈
a

⌈a
b ⌉

⌉ ≤ b (C.6)Proof: There is a pair of x, y ∈ N su
h that a = bx− y and 0 ≤ y ≤ b− 1. Thus, it holdsthat
⌈
a

⌈a
b
⌉
⌉ = ⌈

a

x
⌉ = b+ ⌈

−y

x
⌉

(C.5)
= b− ⌊

y

x
⌋ ≤ b

⊣Lemma C.8
a1 + a1

n∑

i=2

[
(ai − 1)

n∏

k=i+1

ak

]
=

n∏

i=1

ai (C.7)Proof:
a1 + a1 [(a2 − 1)a3 . . . an + (a3 − 1)a4 . . . an + · · · + (an−2 − 1)an−1an + (an−1 − 1)an + an − 1] =

= a1 + a1 [(a2 − 1)a3 . . . an + (a3 − 1)a4 . . . an + · · · + (an−2 − 1)an−1an + an−1an − 1] =

= a1 + a1 [(a2 − 1)a3 . . . an + (a3 − 1)a4 . . . an + · · · + an−2an−1an − 1] =

= · · · =

= a1 + a1 [a2a3 . . . an − 1] = a1a2 . . . an

⊣

Bibliography
[ABR96℄ R. Andonov, H. Bourzou�, and S. Rajopadhye. Two-Dimensional OrthogonalTiling: from Theory to Pra
ti
e. In Pro
eedings of the 1996 International Con-feren
e on High-Performan
e Computing (HiPC'96), pages 225{231, Trivandrum,India, De
. 1996.[ABRY03℄ R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev. Optimal Semi-Oblique Tiling.IEEE Transa
tions on Parallel and Distributed Systems, 14(9):944{960, Sep. 2003.[ACN+00℄ R. Andonov, P. Calland, S. Niar, S. Rajopadhye, and N. Yanev. First Steps TowardsOptimal Oblique Tile Sizing. In 8th International Workshop on Compilers forParallel Computers, pages 351{366, Aussois, Jan. 2000.[AI91℄ C. An
ourt and F. Irigoin. S
anning Polyhedra with DO Loops. In Pro
eedings ofthe Third ACM SIGPLAN Symposium on Prin
iples & Pra
ti
e of Parallel Pro-gramming (PPoPP), pages 39{50, Williamsburg, VA, April 1991.[AK04℄ E. Athanasaki and N. Koziris. Fast Indexing for Blo
ked Array Layouts to ImproveMulti-Level Ca
he Lo
ality. In Pro
eedings of the 8-th Workshop on Intera
tionbetween Compilers and Computer Ar
hite
tures (INTERACT'04), pages 109{119,Madrid, Spain, Feb. 2004. Held in
onjun
tion with HPCA-10.[AKK03℄ M. Athanasaki, E. Koukis, and N. Koziris. EÆ
ient S
heduling of Tiled IterationSpa
es onto a Fixed Size Parallel Ar
hite
ture. In Pro
eedings of the 9th Panhelleni
Conferen
e in Informati
s, pages 178{192, Thessaloniki, Gree
e, Nov. 2003.[AKK04℄ M. Athanasaki, E. Koukis, and N. Koziris. S
heduling of Tiled Nested Loops onto aCluster with a Fixed Number of SMP Nodes. In Pro
eedings of the 12-th Euromi
roConferen
e on Parallel, Distributed and Network based Pro
essing (PDP04), pages424{433, A Coruna, Spain, Feb. 2004. IEEE Computer So
iety Press.

182 BIBLIOGRAPHY
[AKN95℄ A. Agarwal, D. Kranz, and V. Natarajan. Automati
 Partitioning of Parallel Loopsand Data Arrays for Distributed Shared-Memory Multipro
essors. IEEE Transa
-tions on Parallel and Distributed Systems, 6(9):943{962, 1995.[AKPT99℄ T. Andronikos, N. Koziris, G. Papakonstantinou, and P. Tsanakas. OptimalS
heduling for UET/UET-UCT Generalized N-Dimensional Grid Task Graphs.Journal of Parallel and Distributed Computing, 57(2):140{165, May 1999.[AKPT00℄ T. Andronikos, N. Koziris, G. Papakonstantinou, and P. Tsanakas. OptimalS
heduling for UET-UCT Grids Into Fixed Number of Pro
essors. In Pro
eedingsof 8th Euromi
ro Workshop on Parallel and Distributed Pro
essing (PDP2000),IEEE Press, pages 237{243, Rhodes, Gree
e, Jan. 2000.[AKT05℄ E. Athanasaki, N. Koziris, and P. Tsanakas. A Tile Size Sele
tion Analysis forBlo
ked Array Layouts. In Pro
eedings of the 9-th Workshop on Intera
tion be-tween Compilers and Computer Ar
hite
tures (INTERACT'05), pages 70{80, SanFran
is
o, CA, Feb. 2005. Held in
onjun
tion with HPCA-11.[AL93℄ S. P. Amarasinghe and M. S. Lam. Communi
ation Optimization and Code Gen-eration for Distributed Memory Ma
hines. In Pro
eedings of the ACM SIGPLANConferen
e on Programming Language Design and Implementation (PLDI'93), Al-buquerque, New Mexi
o, USA, June 1993.[AMC97℄ V. Adve and J. Mellor-Crummey. Advan
ed Code Generation for High Performan
eFortran. In Languages, Compilation Te
hniques and Run Time Systems for S
alableParallel Systems,
hapter 18, Le
ture Notes in Computer S
ien
e Series. Springer-Verlag, 1997.[AMP00a℄ N. Ahmed, N. Mateev, and K. Pingali. Synthesizing Transformations for Lo
alityEnhan
ement of Imperfe
tly-nested Loop Nests. In Pro
eedings of the 14th Inter-national Conferen
e on Super
omputing (ICS2000), pages 141{152, Santa Fe, NewMexi
o, United States, 2000.[AMP00b℄ N. Ahmed, N. Mateev, and K. Pingali. Tiling Imperfe
tly-nested Loop Nests. InPro
eedings of the 2000 ACM/IEEE Conferen
e on Super
omputing, Dallas, Texas,United States, 2000.[AST+05℄ M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, N. Koziris, and P. Tsanakas. Hy-perplane Grouping and Pipelined S
hedules: How to Exe
ute Tiled Loops Fast onClusters of SMPs. The Journal of Super
omputing, 33(3):197{226, Sep. 2005.[ASTK02a℄ M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and N. Koziris. A Pipelined Ex-e
ution of Tiled Nested Loops on SMPs with Computation and Communi
ation

BIBLIOGRAPHY 183
Overlapping. In Pro
eedings of the Workshop on Compile/Runtime Te
hniques forParallel Computing, in
onjun
tion with 2002 International Conferen
e on ParallelPro
essing (ICPP-2002), pages 559{567, Van
ouver, Canada, Aug. 2002.[ASTK02b℄ M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and N. Koziris. Pipelined S
hedulingof Tiled Nested Loops onto Clusters of SMPs using Memory Mapped NetworkInterfa
es. In Pro
eedings of the 2002 ACM/IEEE
onferen
e on Super
omputing(SC2002), Baltimore, Maryland, Nov. 2002. IEEE Computer So
iety Press.[Ban88℄ Uptal Banerjee. Dependen
e Analysis for Super
omputing. Kluwer A
ademi
 Pub-lishers, 1988.[Ban93℄ Uptal Banerjee. Loop Transformations for Restru
turing Compilers, pages 81{92.Kluwer A
ademi
 Publishers, 1993.[Ban94℄ Uptal Banerjee. Loop Parallelization. Kluwer A
ademi
 Publishers, 1994.[BDRR94℄ P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling? INTEGRA-TION, The VLSI Jounal, 17:33{51, 1994.[BDRV99℄ P. Boulet, J. Dongarra, Y. Robert, and F. Vivien. Stati
 Tiling for HeterogeneousComputing Platforms. Parallel Computing, 25:547{568, 1999.[Ber66℄ A. Bernstein. Analysis of Programs for Parallel Programming. IEEE Transa
tionson Computers, 15(5):757{763, O
t. 1966.[Blu96℄ M. Blumri
h. Network Interfa
e for Prote
ted, User-Level Communi
ation. PhDthesis, Prin
eton University, April 1996.[BW95℄ A.J.C. Bik and H.A.G. Wijsho�. Implementation of Fourier-Motzkin Elimination.In First Annual Conferen
e of the ASCI, pages 377{386, The Netherlands, 1995.[CDR97℄ P. Y. Calland, J. Dongarra, and Y. Robert. Tiling with Limited Resour
es. InAppli
ation Spe
i�
 Systems, Ar
hite
tures, and Pro
essors, ASAP'97, pages 229{238. IEEE Computer So
iety Press, July 1997. Extended version available on theweb at http://www.ens-lyon.fr/∼yrobert.[CDRV98℄ P. Y. Calland, A. Darte, Y. Robert, and F. Vivien. On the Removal of Anti andOutput Dependen
es. International Journal of Parallel Programming, 26(2):285{312, 1998.[CKE+04℄ G. S. Choi, J.-H. Kim, D. Ersoz, A. B. Yoo, and C. R. Das. Cos
heduling inClusters: Is It a Viable Alternative? In Pro
eedings of the 2004 ACM/IEEE
onferen
e on Super
omputing (SC2004), Pittsburgh, PA, USA, Nov. 2004.

184 BIBLIOGRAPHY
[CMZ92℄ B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. InPro
eedings of the Third Workshop on Compilers for Parallel Computers, pages121{160, July 1992.[CS99℄ David E. Culler and Jaswinder Pal Singh. Parallel Computer Ar
hite
ture - AHardware/Software Approa
h. Morgan Kaufmann, 1999.[CTHI98℄ F. O' Carroll, H. Tezuka, A. Hori, and Y. Ishikawa. The Design and Implementationof Zero Copy MPI Using Commodity Hardware with a High Performan
e Network.In Pro
eedings of the International Conferen
e on Super
omputing, pages 243{249,Melbourne, Australia, 1998.[CZL95℄ M. Cierniak, M. Zaki, and W. Li. Loop S
heduling for Heterogeneity. In Pro
eed-ings of the 4th IEEE International Symposium on High Performan
e DistributedComputing (HPDC'95), pages 78{85, Washington D.C., Aug. 1995.[CZL97℄ M. Cierniak, M. Zaki, and W. Li. Compile-Time S
heduling Algorithms for aHeterogeneous Network of Workstations. The Computer Journal, 40(6):356{372,1997.[DDRR97℄ F. Desprez, J. Dongarra, F. Rastello, and Y. Robert. Determining the Idle Time of aTiling: New Results. Journal of Information S
ien
e and Engineering, 14:167{190,Mar
h 1997.[DGAK03℄ N. Drosinos, G. Goumas, M. Athanasaki, and N. Koziris. Delivering High Perfor-man
e to Parallel Appli
ations Using Advan
ed S
heduling. In Pro
eedings of theParallel Computing 2003 (ParCo 2003), Dresden, Germany, Sep. 2003.[DGK+00℄ I. Drossitis, G. Goumas, N. Koziris, G. Papakonstantinou, and P. Tsanakas. Eval-uation of Loop Grouping Methods based on Orthogonal Proje
tion Spa
es. InPro
eedings of the International Conferen
e on Parallel Pro
essing, pages 469{476,Toronto, Canada, Aug. 2000.[DK04℄ N. Drosinos and N. Koziris. Performan
e Comparison of Pure MPI vs HybridMPI-OpenMP Parallelization Models on SMP Clusters. In Pro
eedings of the 18thInternational Parallel and Distributed Pro
essing Symposium 2004 (IPDPS 2004),page 15, Santa Fe, New Mexi
o, April 2004.[DRR96℄ M. Dion, T. Risset, and Y. Robert. Resour
e-
onstrained S
heduling of PartitionedAlgorithms on Pro
essor Arrays. INTEGRATION, The VLSI Jounal, 20, 1996.[FHK+91℄ G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu.Fortran-D Language Spe
i�
ation. Te
hni
al Report TR-91-170, Dept. of Com-puter S
ien
e, Ri
e University, De
. 1991.

BIBLIOGRAPHY 185
[FLV95℄ A. Fernandez, J. Llaberia, and M. Valero. Loop Transformations Using Nonunimod-ular Matri
es. IEEE Transa
tions on Parallel and Distributed Systems, 6(8):832{840, Aug. 1995.[GAK02a℄ G. Goumas, M. Athanasaki, and N. Koziris. Automati
 Code Generation for Ex-e
uting Tiled Nested Loops Onto Parallel Ar
hite
tures. In Pro
eedings of the2002 ACM Symposium on Applied Computing (SAC 2002), pages 876{881, Madrid,Spain, Mar
h 2002.[GAK02b℄ G. Goumas, M. Athanasaki, and N. Koziris. Code Generation Methods for TilingTransformations. Journal of Information S
ien
e and Engineering, 18(5):667{691,Sep. 2002.[GAK03℄ G. Goumas, M. Athanasaki, and N. Koziris. An EÆ
ient Code Generation Te
h-nique for Tiled Iteration Spa
es. IEEE Transa
tions on Parallel and DistributedSystems, 14(10):1021{1034, O
t. 2003.[GDAK02a℄ G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Compiling Tiled IterationSpa
es for Clusters. In Pro
eedings of the 2002 IEEE International Conferen
e onCluster Computing, pages 360{369, Chi
ago, Illinois, Sep. 2002.[GDAK02b℄ G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Data Parallel Code Gener-ation for Arbitrarily Tiled Nested Loops. In Pro
eedings of the 2002 InternationalConferen
e on Parallel and Distributed Pro
essing Te
hniques and Appli
ations,pages 610{616, Las Vegas, Nevada, USA, June 2002.[GDAK04℄ G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Automati
 Parallel CodeGeneration for Tiled Nested Loops. In Pro
eedings of the 2004 ACM Symposium onApplied Computing (SAC 2004), pages 1412{1419, Ni
osia, Cyprus, Mar
h 2004.[Gou03℄ G. Goumas. Aυτóµατη Παραγωγή Παράλληλoυ SPMD Kώδικα για

Mǫτασχηµατισµoύς Y πǫρκóµβων σǫ Φωλιασµǫ́νoυς Bρóχoυς. PhD thesis,S
hool of Ele
tri
al and Computer Engineering, National Te
hni
al University ofAthens, De
. 2003.[GSK01℄ G. Goumas, A. Sotiropoulos, and N. Koziris. Minimizing Completion Time forLoop Tiling with Computation and Communi
ation Overlapping. In Pro
eedingsof IEEE International Parallel and Distributed Pro
essing Symposium (IPDPS'01),San Fran
is
o, April 2001.[HCF97℄ K Hogstedt, L. Carter, and J. Ferrante. Determining the Idle Time of a Tiling. InPrin
iples of Programming Languages (POPL), pages 160{173, Jan. 1997.

186 BIBLIOGRAPHY
[HCF99℄ K. Hogstedt, L. Carter, and J. Ferrante. Sele
ting Tile Shape for Minimal Exe
utiontime. In ACM Symposium on Parallel Algorithms and Ar
hite
tures, pages 201{211,1999.[HCF03℄ K Hogstedt, L. Carter, and J. Ferrante. On the Parallel Exe
ution Time of TiledLoops. IEEE Transa
tions on Parallel and Distributed Systems, 14(3):307{321,Mar
h 2003.[Hel99℄ H. Hellwagner. The SCI Standard and Appli
ations of SCI. In H. Hellwagner andA. Reine�eld, editors, S
alable Coherent Interfa
e (SCI): Ar
hite
ture and Softwarefor High-Performan
e Computer Clusters, pages 3{34. Springer-Verlag, Sep. 1999.[Hol92℄ E. H. Hollander. Partitioning and Labeling of Loops by Unimodular Transforma-tions. IEEE Transa
tions on Parallel and Distributed Systems, 3(4):465{476, July1992.[HP96℄ M. Haghighat and C. Poly
hronopoulos. Symboli
 Analysis for Parallelizing Com-pilers. ACM Transa
tions on Programming Languages and Systems, 18(4):477{518,July 1996.[HP03℄ J. Hennessy and D. Patterson. Computer Ar
hite
ture - A Quantitative Approa
h.Morgan Kaufmann Publishers, San Fran
is
o, CA, 3rd edition, 2003.[HS98℄ E. Hodzi
 and W. Shang. On Supernode Transformation with Minimized TotalRunning Time. IEEE Transa
tions on Parallel and Distributed Systems, 9(5):417{428, May 1998.[HS02℄ E. Hodzi
 and W. Shang. On Time Optimal Supernode Shape. IEEE Transa
tionson Parallel and Distributed Systems, 13(12):1220{1233, De
. 2002.[ID98℄ S. Ioannidis and S. Dwarkadas. Compiler and Run-Time Support for Adaptive LoadBalan
ing in Software Distributed Shared Memory Systems. In Pro
eedings of the4th International Workshop on Languages, Compilers, and Run-Time Systems forS
alable Computers (LCR'98), pages 107{122, Pittsburgh, PA, USA, May 1998.[IT88℄ F. Irigoin and R. Triolet. Supernode Partitioning. In Pro
eedings of the 15th Ann.ACM SIGACT-SIGPLAN Symp. Prin
iples of Programming Languages, pages319{329, San Diego, California, Jan. 1988.[Jim99℄ M. Jimenez. Multilevel Tiling for Non-Re
tangular Iteration Spa
es. PhD thesis,Universitat Polite
ni
a de Catalunia, 1999.[KCN91℄ C.-T. King, W.-H. Chou, and L. Ni. Pipelined Data-Parallel Algorithms: PartII Design. IEEE Transa
tions on Parallel and Distributed Systems, 2(4):430{439,O
t. 1991.

BIBLIOGRAPHY 187
[KCRB03℄ M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Redu
ing FalseSharing and Improving Spatial Lo
ality in a Uni�ed Compilation Framework. IEEETransa
tions on Parallel and Distributed Systems, 14(4):337{354, April 2003.[KMP+95℄ W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonna
ott. TheOmega Library Interfa
e Guide. Te
hni
al Report CS-TR-3445, CS Dept., Univ.of Maryland, College Park, Mar
h 1995.[KP96℄ T. Kim and J. Purtilo. Load Balan
ing for Parallel Loops in Workstation Clusters.In Pro
eedings of the 1996 International Conferen
e on Parallel Pro
essing (ICPP'96), Bloomingdale, Illinois, Aug. 1996.[KRC99℄ M. Kandemir, J. Ramanujam, and A. Choudary. Improving Ca
he Lo
ality by aCombination of Loop and Data Transformations. IEEE Transa
tions on Comput-ers, 48(2):159{167, Feb. 1999.[KSG03℄ N. Koziris, A. Sotiropoulos, and G. Goumas. A Pipelined S
hedule to MinimizeCompletion Time for Loop Tiling with Computation and Communi
ation Over-lapping. Journal of Parallel and Distributed Computing, 63(11):1138{1151, Nov.2003.[Kul98℄ D. Kulkarni. Transformations for Improving Data A

ess Lo
ality in Non-Perfe
tlyNested Loops. In Pro
eedings of 1998 International Conferen
e on Parallel Ar
hi-te
tures and Compilation Te
hniques (PACT'98), pages 314{321, Paris, Fran
e,1998.[Li93℄ W. Li. Compiling for NUMA Parallel Ma
hines. PhD thesis, Cornell Univ., Itha
a,New York, 1993.[LL98℄ A. Lim and M. Lam. Maximizing parallelism and minimizing syn
hronization withaÆne partitions. Parallel Computing, 24:445{475, May 1998.[LLL01℄ A. Lim, S. Liao, and M. Lam. Blo
king and Array Contra
tion A
ross ArbitrarilyNested Loops Using AÆne Partitioning. In Pro
eedings of the 8th ACM SIGPLANsymposium on Prin
iples and Pra
ti
es of Parallel Programming (PPoPP'01),pages 103{112, Snowbird, Utah, United States, 2001.[LRW91℄ M. Lam, E. Rothberg, and M. Wolf. The Ca
he Performan
e and Optimizations ofBlo
ked algorithms. In Se
ond International Conferen
e on Ar
hite
tural Supportfor Programming Languages and Operating Systems (ASPLOS), pages 63{74, SantaClara, California, April 1991.

188 BIBLIOGRAPHY
[MA01℄ N. Manjikian and T. S. Abdelrahman. Exploiting Wavefront Parallelism on Large-S
ale Shared-Memory Multipro
essors. IEEE Transa
tions on Parallel and Dis-tributed Systems, 12(3):259{271, Mar
h 2001.[MHCF98℄ N. Mit
hell, K. Hogsted, L. Carter, and J. Ferrante. Quantifying the Multi-LevelNature of Tiling Intera
tions. International J. Parallel Programming, 1998.[ML94℄ E. P. Markatos and T. J. LeBlan
. Using Pro
essor AÆnity in Loop S
heduling onShared-Memory Multipro
essors. IEEE Transa
tions on Parallel and DistributedSystems, 5(4):379{400, April 1994.[Mor98℄ P. Morin. Coarse Grained Parallel Computing on Heterogeneous Systems. InPro
eedings of the 1998 ACM Symposium on Applied Computing (SAC'98), pages628{634, Atlanta, Georgia, United States, 1998.[MPI94℄ Message Passing Interfa
e Forum MPIF. A Message-Passing Interfa
e Standard.Te
hni
al Report ut-
s-94-230, University of Tennessee, Knoxville, TN, USA, 1994.[MPI97℄ Message Passing Interfa
e ForumMPIF. MPI-2: Extensions to the Message-PassingInterfa
e. Te
hni
al report, University of Tennessee, Knoxville, TN, USA, July1997.[Myr02℄ Myri
om. GM: A Message-Passing System for Myrinet Networks, 2002. http://www.myri.
om/s
s/GM/do
/html.[OSKO95℄ H. Ohta, Y. Saito, M. Kainaga, and H. Ono. Optimal Tile Size Adjustment inCompiling General DOACROSS Loop Nests. In International Conferen
e on Su-per
omputing, pages 270{279, New York, 1995. ACM Press.[PB99℄ S. Pande and T. Bali. A Computation+Communi
ation Load Balan
ed Loop Par-titioning Method for Distributed Memory Systems. Journal of Parallel and Dis-tributed Computing, 58:515{545, 1999.[PC89℄ J. Peir and R. Cytron. Minimum Distan
e: A Method for Partitioning Re
ur-ren
es for Multipro
essors. IEEE Transa
tions on Computers, 38(8):1203{1211,Aug. 1989.[PH94℄ D. Patterson and J. Hennessy. Computer Organization & Design. The Hard-ware/Software Interfa
e. Morgan Kaufmann Publishers, San Fran
is
o, CA, 1994.[PHP03℄ N. Park, B. Hong, and V. Prasanna. Tiling, Blo
k Data Layout and MemoryHierar
hy Performan
e. IEEE Transa
tions on Parallel and Distributed Systems,14(7):640{654, July 2003.

BIBLIOGRAPHY 189
[PTK98℄ G. Papakonstantinou, P. Tsanakas, and N. Koziris. Aπǫικóνιση Aλγoρίθµων

σǫ Aρχιτǫκτoνικǫ́ς Παράλληλης Eπǫξǫργασίας, page 33. Παπασωτηρίoυ -
EΠIΣEY/EMΠ, Athens, Gree
e, 1998.[Pug92℄ William Pugh. The Omega Test: A fast and Pra
ti
al Integer Programming Al-gorithm for Dependen
e Analysis. Communi
ations of the ACM, 35(8):102{114,Aug. 1992.[PW86℄ D. Padua and W. Wolfe. Advan
ed Compiler Optimizations for Super
omputers.Communi
ations of the ACM, 29(12), 1986.[Ram92℄ J. Ramanujam. Non-Unimodular Loop Transformations of Nested Loops. In Su-per
omputing 92, pages 214{223, Minneapolis, Nov. 1992.[Ram95℄ J. Ramanujam. Beyond Unimodular Transformations. Journal of Super
omputing,9(4):365{389, O
t. 1995.[RR02℄ F. Rastello and Y. Robert. Automati
 Partitioning of Parallel Loops withParallelepiped-Shaped Tiles. IEEE Transa
tions on Parallel and Distributed Sys-tems, 13(5):460{470, May 2002.[RR04℄ L. Renganarayana and S. Rajopadhye. A Geometri
 Programming Framework forOptimal Multi-Level Tiling. In Pro
eedings of the 2004 ACM/IEEE
onferen
e onSuper
omputing (SC2004), Pittsburgh, PA USA, Nov. 2004.[RRP03℄ F. Rastello, A. Rao, and S. Pande. Optimal task s
heduling at run time to exploitintra-tile parallelism. Parallel Computing, 29(2):209{239, 2003.[RS92℄ J. Ramanujam and P. Sadayappan. Tiling Multidimensional Iteration Spa
es forMulti
omputers. Journal of Parallel and Distributed Computing, 16:108{120, 1992.[Sak97℄ R. Sakellariou. A Compile-Time Partitioning Strategy for Non-Re
tangular LoopNests. In Pro
eeding of the 1997 International Parallel Pro
essing Symposium(IPPS97), 1997.[SC95℄ J.-P. Sheu and T.-S. Chen. Partitioning and Mapping Nested Loops for LinearArray Multi
omputers. Journal of Super
omputing, 9:183{202, 1995.[SF91℄ W. Shang and J.A.B. Fortes. Time Optimal Linear S
hedules for Algorithms withUniform Dependen
es. IEEE Transa
tions on Computers, 40(6):723{742, June1991.[SF92℄ W. Shang and J.A.B. Fortes. Independent Partitioning of Algorithms with UniformDependen
ies. IEEE Transa
tions on Computers, 41(2):190{206, Feb. 1992.

190 BIBLIOGRAPHY
[SG97℄ R. Sakellariou and J. R. Gurd. Compile-Time Minimization of Load Imbalan
e inLoop Nests. In Pro
eeding of the 1997 International Conferen
e on Super
omputing(ICS97), Vienna, Austria, 1997.[SL99℄ Y. Song and Z. Li. New Tiling Te
hniques to Improve Ca
he Temporal Lo
ality.In Pro
eedings of the ACM SIGPLAN 1999 Conferen
e on Programming LanguageDesign and Implementation (PLDI'99), pages 215{228, Atlanta, Georgia, UnitedStates, 1999.[SLR+95℄ E. Su, A. Lain, S. Ramaswamy, D. J. Palermo, E. W. Hodges, and P. Banerjee.Advan
ed Compilation Te
hniques in the PARADIGM Compiler for DistributedMemory Multi
omputers. In Pro
eedings of the ACM International Conferen
e onSuper
omputing (ICS), Madrid, Spain, July 1995.[Sot04℄ A. Sotiropoulos. Aπoδoτική Aξιoπoίηση Σύγχρoνων ∆ικτυακών Tǫχνoλoγιών

στην Παράλληλη Eκτ ǫ́λǫση Υπoλoγισµών σǫ Συστoιχίǫς Υπoλoγιστών

Υψηλών Eπιδóσǫων. PhD thesis, S
hool of Ele
tri
al and Computer Engineer-ing, National Te
hni
al University of Athens, Feb. 2004.[ST91℄ J.-P. Sheu and T.-H. Tai. Partitioning and Mapping Nested Loops on Multipro
es-sor Systems. IEEE Transa
tions on Parallel and Distributed Systems, 2(4):430{439,O
t. 1991.[STK02℄ A. Sotiropoulos, G. Tsoukalas, and N. Koziris. Enhan
ing the Performan
e ofTiled Loop Exe
ution onto Clusters using Memory Mapped Network Interfa
esand Pipelined S
hedules. In Pro
eedings of the 2002 Workshop on Communi
ationAr
hite
ture for Clusters (CAC'02), International Parallel and Distributed Pro
ess-ing Symposium (IPDPS'02), Fort Lauderdale, Florida, April 2002.[TKP00℄ P. Tsanakas, N. Koziris, and G. Papakonstantinou. Chain Grouping: A Methodfor Partitioning Loops onto Mesh-Conne
ted Pro
essor Arrays. IEEE Transa
tionson Parallel and Distributed Systems, 11(9):941{955, Sep. 2000.[TLH94℄ J. Torrellas, H. Lam, and J. Hennessy. False Sharing and Spatial Lo
ality in Mul-tipro
essor Ca
hes. IEEE Transa
tions on Computers, 43(6):651{663, June 1994.[TN93℄ T. Tzen and L. Ni. Trapezoid Self-S
heduling: A Pra
ti
al S
heduling S
hemefor Parallel Compilers. IEEE Transa
tions on Parallel and Distributed Systems,4(1):87{98, Jan. 1993.[TOP℄ Top500 list for november 2004. http://www.top500.org/lists/2004/11/.[TX00℄ P. Tang and J. Xue. Generating EÆ
ient Tiled Code for Distributed MemoryMa
hines. Parallel Computing, 26(11):1369{1410, 2000.

BIBLIOGRAPHY 191
[WL91a℄ M. Wolf and M. Lam. A Data Lo
ality Optimizing Algorithm. In ACMSIGPLAN'91 Conferen
e on Programming Language Design and Implementation(PLDI), Toronto, Ontario, June 1991.[WL91b℄ M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm toMaximize Parallelism. IEEE Transa
tions on Parallel and Distributed Systems,2(4):452{471, O
t. 1991.[XC02℄ J. Xue and W. Cai. Time-minimal Tiling when Rise is Larger than Zero. ParallelComputing, 28(6):915{939, 2002.[Xue94℄ J. Xue. Automati
 Non-unimodular Loop Transformations for Massive Parallelism.Parallel Computing, 20(5):711{728, 1994.[Xue96℄ J. Xue. AÆne-by-Statement Transformations of Imperfe
tly Nested Loops. InPro
eedings of the 10th International Parallel Pro
essing Symposium (IPPS'96),pages 34{38, Honolulu, Hawaii, Apr. 1996.[Xue97a℄ J. Xue. Communi
ation-Minimal Tiling of Uniform Dependen
e Loops. Journal ofParallel and Distributed Computing, 42(1):42{59, 1997.[Xue97b℄ J. Xue. On Tiling as a Loop Transformation. Parallel Pro
essing Letters, 7(4):409{424, 1997.[Xue00℄ Jingling Xue. Loop Tiling for Parallelism. Kluwer A
ademi
 Publishers, 2000.[ZLP97℄ M. Zaki, W. Li, and S. Parthasarathy. Customized Dynami
 Load Balan
ingfor a Network of Workstations. Journal of Parallel and Distributed Computing,43(2):156{162, June 1997.

