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IepiAndm

H Sratpfy) awt) mpoabétet €va Abapdxt axdun otn Adon Tou npofARUdToC TNC TopAY WY NS To-
OGAANAOL HGBLXA VLo TEOYEAUUATA TIOU TEPLEYOLY TEAELX PuALACUEVOUS Bpdyouc. Ltn cUyypovn
BBhioypapia, n mopahAnionolnon TETowY Soudy €xel xat’ apyhv BaoloTEl 0TO PETAGY UATIOUS
tiling, v oAl yetaoynuatioud unepxdufwy. 'Eyouv npotabel uébodol yia tnv avtduotrn ue-
TOTEOTY TOU GELPLAXOU OB ot TopdAAnho. Enlong, éyouv mpotabel evalhaxtixéc Aot yia
T0 Ypovioub uetall emxolvwviag xou utoloytoudy. ‘Oieg autég oL AUoELS, BUWS, APopoly TNV
eXTENEDT) TOU TEMXOU TpoYpduuatoc o ula anhyi custotyia (cluster) utoloyiotdy.

YAuepa, Tor TAEOV Loy Upd UnyaviuaTa, SEV AmoTEAOUVTOL amd amAoUS UTOAOYLOTES, ARG Ao
nohv-eneepyaotixéc Yovddeg (deite ) AMota Twv 500 TLo toyLpGOY LTOAOYLETEY TOU XGGUOU TOU
NoeuBptou 2004). To Waitepo yapaxtnpiotxd Toug elvan 6Tl oL enelepyaotéc Tou (Blou x6ufou
BAETOLY XOLVY) UVTUT), EVEG 600t Bploxovtal ot SlapopeTinolc x6UB0UC ETLXOLYOVOUY OVOYXAGTIX
ue avtarhayy unvuudtwy. Ipdxeitar, dnhadh yio deninedeg apyttextovixéc. Méypr otuyunc dev
elye mpotabel xdnota Ao, mou va Aaufdver unddr Ty avouolouop@lo auth. ‘Ouwe, 1 avtaAlayt
UNVUUETOY oxOUn %ol aVEUESH GTOUS EMEEEPYAOTES IOV €Youv dueor Tpdcflacn otny (S uo-
VaSa UVAUNG, ATOTEAEL ONUOVTIXY| AMOAELDL YPOVOU Yo TO TEAXS Tedypauua. To medBinua autd,
howmdy, avtiuetoniletar anodotixd otny mapovca dtatelr. Emtuyydvouue tnv uéypet oTiyunc
Bértiotn allomoinom tou eVpouc LAVNEC %ol TV SUVATOTATWY TV XAPTGV dixtvou. Tautdypova,
unopolue anAd xou ue cogrivera va opllouvue uia ypovixh Spouoldynom twy utepxdufny, naped
TNV 0VOUOLOUOEQT ETLXOLVWVIa UETAE) TOUg.

'Eva dhho Béua mou Sev elye wéypt otiyunc aviuetomotel elvat autd tne xatavouric Twy tiles,
7 unepxouPwy ot enelepyaotéc. X BBhoyeagpla, 6hec oyeddv ol npooeyyloelc Hewpoly elte
6TL UTdpyEL amepLopLoTog apliude enelepyaoTtdy, elte 6Tl To péyelog Twv tiles emiéyetar dote
oL dtabéaipol eneepyaotéc va elvon apxetol. 'Ouwe, oxondc TOU UETACY NUATLOHOU UTEPXOUSwY
(tiling) dev elvor pubévo 1 napadinhonoinoyn tou xMdxa, aAAd xat 1 BeAttotonolnoT e Tomxs-
TNTAC TV AVaAPopdY ot Sedouéva Tng UVAUNG. TNy Teplntwor, auth, ot 3Vo 61dyoL od1yoly e

aVTLXEOUGUEVY anoTeréouata. Enedr) o ypdvog mou yeetdletal yiol TNy TeooTéAACT, SESOUEVWY,



oL de Bploxovtar 6Ty Yehyopn UVAUN Tou cueTAUNTOC, dev elvat auehntéoc (Unopel va elvat ou-
yxplowog, 1, axdéun xat TOAATAEGLOE ToU Yedvou Tou ypeetdletat yia Ty eneiepyaciag Toug), Sev
Bo énpene va mopaueAnBel 1 TapdUETEOC AUTH XATA TNV EMAOYT TOU UETACYNUATIOUOU UTEPOU-
Bwv. Xtn dwtelBr aut), Aowtdy, Siepeuvolue Uelddoug il TNV XATAYOUY TOV UTEPXOUBWY OTLS
UTOAOYLOTIXES UOVADES, OF TEPIMTWOY TOU 0 UETAOYNUATIONOS LTepxOUBov oL To TARfog Toug
elvat 181 Sedopévo. Tlgoxewévou ol uébodol autol va unopoly va evonuatwioly artodotixd oe
éva epyarelo autduaTNg TopaYKYRC xOBLxa, eotdlovue Ty tpocoyy| Hog ot uebddoug otatinic

XATAVOURC TOV UTOAOYLOU®Y, 0L 0ToloL Topouatdlouy XAToLd XovovixdTnTa.

Aé&eig-xhewdd: Metaoynuatioudc tiling, Metaoynuatiopdc unepxdulov, Ouadonoinor unep-
#x6uLowv, Adnhoemixdhudn entxolvoviog xat utoroyloudy, Yrepenineda, Yuotolyiec toluv-enelep-

YaoTx@dy uovddwy, Ileploptouévog aptBude xouBwv.



Abstract

This thesis adds some intuition and some practical solutions to the well-studied problem
of parallelizing nested for-loops. In literature, parallelization of such code segments has been
based on supernode, or tiling transformation. There have been proposed some methods for
the automatic transformation of sequential code into parallel one. In addition, the timing
between communication and computation has been studied. However, these solutions concern
the execution of the final parallel code onto a cluster of single CPU nodes.

Nowadays the most powerful computing systems are consisted of multiprocessor units (see
the Top 500 supercomputer list for November 2004). In such supercomputers, processors within
the same node can directly access the same memory data, while processors in different nodes
should communicate via message passing. No solution had been proposed so far to overcome
this heterogeneity. Message passing among processors inside the same SMP node implies a
significant communication overhead. The above mentioned problem is efficiently alleviated in
this thesis. We pursue and achieve a proper utilization of the bandwidth and the possibilities of
the network cards. At the same time, we can simply and explicitly define a time scheduling of
tiles, in spite of the heterogeneous communication patterns.

Another issue, that had not been thoroughly examined so far, is the allocation of tiles, or su-
pernodes to processors. Almost all approaches in literature consider either an unlimited number
of processors, or that tile size is properly selected to fit the existing architecture. However, tiling
has not been used only for parallelization, but also for achieving cache locality of data memory
references. These two goals conflict with each other, concerning the tile size selection. Since the
time needed for accessing data in main memory is not at all negligible (it may be comparable, or
even a multiple of time needed for processing data), this parameter should not be left out when
selecting a tiling transformation. In this thesis, we investigate certain techniques for allocating
tiles to computing nodes, in case the tiling transformation, the size of the tile space and of the
architecture are given. We consider static, regular techniques of allocation, in order to be able

to incorporate them efficiently into an automatic parallel code generation tool.



Keywords: Supernodes, Loop tiling, Tile grouping, Overlapping communication, Pipelined

Schedules, Hyperplanes, Clusters of SMPs, Fixed number of nodes.
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Introduction

1.1 Motivation

Tiling, or supernode transformation has been widely used in parallel processing for restructuring
nested for-loop code segments. When applying tiling, neighboring iterations are grouped to-
gether into a tile, or supernode. Thereupon, each tile is treated as one computation unit. That
is, we schedule tiles instead of iterations, we decide which tiles will be assigned to a processor
and so on. Therefore, we achieve to decrease the total communication load of the code segment

as follows:

e Assuming that iterations of the initial code segment may be assigned to any processor of
the parallel architecture, the communication load implied may be vast in comparison to the
computation load. When applying tiling, we force neighboring iterations to be executed
onto the same processor. Therefore, the communication requirements among them are

eliminated.

e In message passing interfaces, designed for distributed memory computing systems, the
cost of initializing a data transfer is not negligible. When applying tiling, apart from
grouping iterations, we also group the resulting data transfers. Thus, we may initialize
only one message per tile per communication direction, reducing in this way the number

of messages and the communication startup cost.

A lot of work has been conducted in this area, concerning the selection of the optimal tiling
transformation. Researchers have concluded that, on the one hand, rectangular tiling is simple.
Thus, both the application of the tiling transformation and the execution of the final tiled code
is efficient [TX00]. On the other hand, non-rectangular tiling may be more appropriate for a
specific code segment [HS02], [HCF03]. Thus, if it is properly applied, it may give the peak
performance [GDAKO02a].
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As far as parallel processing is concerned, the size and shape of tiles is mainly selected so as to
minimize the communication overhead. The resulting tiling transformation seems to be the same
when either a distributed [Xue97a] or a shared memory [RR02] system is aimed. Consequently,
when a multilevel parallel architecture is involved, the optimal tiling transformation is just the
same.

However, when applying a tiling transforation, tile shape and size are not the only concerns.
One should also determine a time schedule, for both computations and communication. This
problem has also been addressed when either a distributed or a shared memory architecture is
involved. It has not been addressed for a multilevel parallel architecture, such as a cluster of
shared memory multiprocessors (SMPs). In this thesis, a time schedule is produced, which takes
into account the communication requirements among processors, which may reside either in the
same or in different SMP nodes.

Once a tiling transformation has been applied onto a nested for-loop code segment, and a
time scheduling has been produced, one may assume that it can be really implemented onto a
parallel architecture. In fact, this is not always true. The number of processors of an existing
platform may be less than the number of processors required for the application of a time
schedule. Although in literature a lot of papers deal with the problem of scheduling onto a
fixed number of processors, very few of them are applicable on nested for-loops, that cannot
be partitioned into independent sub-spaces. In this thesis five alternative static schemes, for
scheduling a tile space and assigning tiles to the processors of an existing parallel architecture,

are proposed.

1.2 Related Work

A few years ago the constant increase of the execution speed of programs was mainly based
on the clock frequency increase. In 1980’s, both academia and industry realized that it was
meaningless to further promote the clock speed if they could not feed the processor with data
from memory [PH94|, [HP03]. Their efforts concentrated onto minimizing the distance between
the processor and memory data, using cache memories. They went on increasing the clock
speed, but at the same time they increased the size and bandwidth of caches, they improved the
algorithms used for storing and searching data in them.

Nowadays, technology seems to have approached the core. A further increase of either the
clock speed or the cache bandwidth is sustained by physical restrictions, such as the speed of
light and the minimum distances that should exist inside a chip, so as electrical signals do not
interfere with each other. Therefore, the only notion that can supply computer performance
with a thrust seems to be parallel processing.

However, without an intervention from the programmer, parallel processing may have an

impact only when several independent programs are to be executed simultaneously. A minor
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intervention is required when a single program can be partitioned into independent or loosely
dependent tasks. What happens when we are interested in speeding up a single program, which
cannot be partitioned into independent regions? Then, a thorough analysis of data dependences

[Ban88], [Pug92] is required, so as to decide which tasks could be efficiently parallelized.

Nested for-loops can be placed among the most critical code segments, which deserve paral-
lelization. They usually impose a significant overhead to the total program execution, since they
iterate many times over the same statements. In order to achieve the maximum acceleration,
one of the key issues to be considered is minimization of the communication overhead. Papers
elaborating on this issue can be divided into two main categories corresponding to fine grain

parallelization and coarse grain parallelization.

As far as fine grain parallelism is concerned, the communication overhead is reduced by
applying methods that group together neighboring chains of iterations [KCN91], [SC95], while
preserving the optimal hyperplane schedule [DGK™100], [ST91], [TKP00]. The objective of par-
titioning the initial iteration space into chains of iterations has always been the minimization
of inter-chain dependences. Thereupon, some chains may be grouped together and executed in

the same processor, aiming again to reduce the inter-processor dependences.

As far as coarse grain parallelism is concerned, researchers have dealt with the problem of
alleviating the communication overhead by applying the supernode or tiling transformation.
Supernode partitioning of the iteration space was initially proposed by Irigoin and Triolet in
[IT88]. They introduced the initial model of loop tiling and gave conditions for a tiling trans-
formation to be valid. Later, Ramanujam and Sadayappan in [RS92] showed the equivalence
between the problem of finding a set of extreme vectors for a given set of dependence vectors
and the problem of finding a tiling transformation that produces valid, deadlock-free tiles. The
problem of determining the optimal shape was surveyed, and more accurate conditions were also
given by others, as in [BDRR94], [HS02], [HCF03]. Some of these approaches aim at minimizing
the amount of data transferred through a message passing interface [Xue97al. Some more of
them are applicable on a shared memory architecture and pursue the minimum amount of data
to be accessed by more than one processors [AKN95], [RR02]. The rest of them attempt to
minimize the time each processor remains idle waiting for the necessary data to be available,
before going on with the computations assigned to it [DDRR97], [HCF97], [HCF99]. All three
approaches result to the same mathematical formulas for the calculation of the optimal tiling

transformation.

Scheduling tiled iteration spaces onto parallel architectures is another important issue, which
has been partially addressed in literature. Dion et al. [DRR96] and Rastello et al. [RRP03]
have reduced the total run-time by properly scheduling the iterations inside a tile. They assume
that a tile execution is non-atomic and each data element is sent to processors that will need it,
as soon as it is computed. Although such an approach may be practical on a VLSI processor

array, it will not be efficient on a modern cluster, where the startup latency of a message cannot
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be ignored, imposing coarse-grain communication.

Although scheduling of tasks on a cluster of workstations seems to be a well elaborated
idea [CKET04], in fact very few approaches have taken into account the regularity of nested
for-loops. Several of them [SG97], [Sak97], [HP96] deal with the distribution of loop iterations
to processors, in special cases, when the iteration space can be decomposed to regions, that
can be parallelized with no communication or synchronization among processors. However, this
is not always the case. As concluded by [LL98], the dependences among iterations may not
allow the application of such a scheduling. In [ML94] a run-time scheduling is presented, which
minimizes communication and synchronization overhead. In [ID98], [ZLP97], a dynamic load-
balancing scheduling algorithm is presented, with a combination of compile-time and run-time
support (hybrid compile and run-time process). However, as argued in [TN93], dynamic, or
run-time scheduling achieves a better load balance when the computation load of iterations is
unevenly distributed. In addition, it is applicable if the loop bounds are unknown at compile
time. Static, or compile-time scheduling is more appropriate for uniformly distributed loops,

following the algorithmic model of this thesis.

As far as the execution of tiles on a cluster of PCs is concerned, all conventional approaches
[ABRY03], [ABR96], [HS98], [OSKO95], [RS92] consider that each processor executes all tiles
along a specific dimension, by interleaving computation and communication phases. All proces-
sors first receive data, then compute, and finally send result data to neighbors in explicitly dis-
tinct phases, according to the hyperplane scheduling vector. Taking into account that modern
network interfaces allow for concurrent communication and computation, in [GSKO01] an alter-
native method for the problem of scheduling the tiles to single CPU nodes was proposed. The
proposed method acts like enhancing the performance of a processor’s datapath with pipelining
[PH94], because a processor computes its tile at k& time step and concurrently receives data from
all neighbors to use them at k + 1 time step and sends data produced at £ — 1 time step. Such
a pipelined execution scheme was proven [STKO02] to nearly double the performance of the al-
gorithms, provided that we use modern NICs (Network Interface Cards), capable of performing
communication without annoying the CPU, and advanced communication protocols (i.e. VIA)
with Zero-Copy [CTHI98], DMA support and User-Level [Blu96] characteristics.

Although the tiling transformation had been so widely studied, in practice it was almost
unattainable to implement the proposed methods in real applications. The overhead for pro-
ducing the parallel code was almost prohibitive. In [AL93], Amarasinghe and Lam presented
a method for automatically producing parallel SPMD code, based on the mathematical rep-
resentation of the iteration space, the data space and the communication data, using a set of
inequalities. In [TX00], Tang and Xue presented a complete framework for producing SPMD
code for distributed memory parallel architectures. However, their approach concerns only rec-
tangular tiling transformations. Finally, in [GAKO03], [GDAKO02a] a complete framework has

been presented for automatically producing parallel code for arbitrarily tiled nested for-loops.
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This method, apart from enhancing the efficiency of the final parallel code, aims at reducing the

overhead of the automatic parallelization.

1.3 One step ahead: What do we need?

Nowadays the most powerful computing systems are consisted of multi-level parallel architec-
tures, such as a cluster of Shared-Memory Multiprocessors. The top 5 computing systems
announced in the 2004 Supercomputer Conference (SC2004) [TOP] in Pittsburgh (BlueGene/L,
Columbia, Earth Simulator, MareNostrum, Thunder), are all based on a multi-level parallel

architecture (see, for example, Figures 1.1 and 1.2).

System
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Figure 1.1: The BlueGene/L Architecture - No 1 in the 24th Top500 Supercomputer list

The method presented in [GSKO01], [STK02] had been applied only on clusters of single CPU
nodes. If applied on a cluster of SMP nodes (Symmetric Multi-Processors), it could not take into
consideration the fact that, among processors of the same node, which can directly communicate
with each other through the node’s shared memory, there is no need for message interchange,
in order to exchange data. This fact has not been taken into account in [MAO1] either, which
aims at scheduling tiles on a cluster of SMP nodes. The result of such a consideration may be
unnecessary transfers from the processing unit to the network card and vice versa, which will
consume a portion of the intra-node communication bandwidth. In the best case, when the
compiler can detect and prevent such unnecessary communication between the processor and

the network card, it will not evict unnecessary transfers among the shared and private space of
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Figure 1.2: The Earth Simulator Architecture - No 3 in the 24th Top500 Supercomputer
list

threads inside the same SMP node [DKO04].

In this thesis, as in [ASTT05], [ASTK02b], [ASTK02a], the method proposed in [GSK01],
[STKO02] is applied on clusters of SMP nodes. For this purpose, we group together tiles, which
should be simultaneously executed by processors of the same node. Thus, we annihilate the
need for communication among processors of the same node. In the sequel, in order to schedule
the groups of tiles, which have arisen, we can make use of the overlapping communication-
computation model, proposed in [GSKO01], [STK02].

Unfortunately, the subsequent execution scheme (similar to its parent schemes proposed
in [HS98], [GSKO01] and the automatic schedules produced when using a code generation tool
[GDAKO2a|) preassumes an unlimited number of processing nodes, or that the tile size has been
selected so that the number of nodes needed is less than or equal to the nodes available. Of course,
it is not always true. The tile size may often be selected so as to minimize the communication
overhead [Xue97a|, [AKN95], [RR02] or maximize memory data references locality [KRC99],
[LRWO91], [WL91a], [PHPO03], [MHCF98]. Thus, we need an efficient method to allocate the
tasks to a predefined number of processors. In this thesis, as in [AKKO04], [AKKO03], some
different assignment schemes for scheduling tiles onto a cluster with a fixed number of SMP

nodes, will be proposed.

1.4 Thesis Contribution

The contribution of this thesis, can be mainly focused on the following two issues:

1. A theoretic model is supplied for scheduling tiles onto a cluster of SMP nodes, using ei-
ther the overlapping or the non-overlapping execution policy, as described in [GSKO1],
[STKO02], [HS98]. This is attained by grouping together tiles, which should be simultane-
ously executed by processors of the same node. Thus, the need for communication among

processors of the same node is annihilated. They should only synchronize with each other
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using a barrier or a semaphore. In addition, the subsequent communication among proces-
sors in different SMP nodes can be similarly grouped, which further reduces the overall

communication overhead of a code segment.

2. In order to apply all above mentioned techniques and automatic code generation tools
[Gou03] onto a cluster with a fixed number of nodes, five alternative assignment schemes
for scheduling tiles are proposed. The advantages and disadvantages of each one are theo-
retically and experimentally investigated. Thus, the guidelines for selecting the appropriate

assignment scheme for each tile space, are provided.

1.5 Thesis Overview

In Chapter 2 of this thesis, some basic preliminary concepts and the mathematical background
required for the comprehension of our methodology are presented. First of all, some mathe-
matical symbols used throughout the thesis are defined. Then, we briefly describe the model of
algorithms, which can be parallelized using the proposed techniques. In the sequel, some basic
concepts from parallel processing, such as dependences and time scheduling, are described. In
addition, some loop transformations, which have been widely used in compiler optimizations, are
briefly discussed. They are divided into linear and non-linear transformations. Among non-linear
loop transformations, we emphasize the tiling transformation, which will be used throughout the
rest of this thesis. Finally, we outline the non-overlapping [HS98] and the overlapping [GSKO01]
execution policies, which constitute the base for the application of our theory.

In Chapter 3, a methodology for the construction of a tool, which can automatically produce
parallel tiled code, is discussed. Special care is taken, so as the final tool to be efficient in
consideration of both the time needed for the generation of the parallel code and the quality of
the code produced. The efficiency at compile-time is enhanced by a reduction of the inequalities
describing the tile space, through a proper expansion of the initial space boundaries. The
efficiency at run-time is achieved by a transformation of the tile iteration space into a rectangular
one. Finally, as far as the communication among processors is concerned, an enhancement of
the ideas presented in [GDAKO02a], [Gou03] for a cluster of single-processing nodes, is described.

In Chapter 4, the non-overlapping and the overlapping execution policies are generalized,
so as to be applied on a cluster of shared memory multiprocessors. In order to achieve this
generalization, we introduce the technique of grouping, which is a kind of tiling applied onto
tiles. We determine the guidelines for the selection of the grouping transformation. Then, a
valid and optimal time schedule for the subsequent group space is produced. We also indicate
how computation tasks should be allocated to the processors. Finally, we theoretically and
experimentally validate the techniques proposed.

In Chapter 5, we assume that a cluster with a fixed number of SMP nodes is available

for the execution of the tiled iteration space. Thus, our scheduling needs to be adapted, so
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as to take into consideration that a fixed number of tiles can be computed at the same time.
Five alternative schedules are proposed: cyclic assignment schedule (§5.2), mirror assignment
schedule (§5.3), cluster assignment (§5.4), retiling (§5.5) and block-cyclic assignment schedule
(8§5.7). Then, we theoretically and experimentally argue about which one should be selected for
the parallelization of a tile space.

In Chapter 6, we conclude with a summary of the arguments presented in this thesis and we
report some future extensions of our work. In Appendix A a summary table of the symbols used
throughout the thesis is provided. Appendix B constitutes a quick reference of our algorithmic
assumptions. Finally, in Appendix C, some simple mathematical formulas, which are often used

in this thesis, are proven.
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Preliminary Concepts -

Mathematical Background

In this chapter, we present some basic preliminary concepts and the mathematical
background, which are necessary for the comprehension of the rest of this thesis.
First of all, we supply an outline of the algorithmic model aimed by the techniques
presented in this thesis. This model is further specified and restricted later on in this
chapter. A summary of the restrictions imposed is also given in Appendiz B. While
going through this thesis, readers may use Appendix B as a quick reference of our
algorithmic model. In addition, some terms originating from the scientific area of
algebra (e.g. lexicographic order) are briefly defined in this chapter. Moreover, we
discuss some concepts widely used in the area of parallel processing (e.g. dependence
analysis, time scheduling, linear loop transformations, tiling). Finally, we outline
the architectural characteristics, which are necessary for the implementation of the

techniques described in this thesis.
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2.1 Notation

Throughout this thesis, we indicate the set of natural numbers by N, and the set of natural
numbers, excluding zero by N* (N* = N — {0}). In addition, we indicate the set of integer
numbers by Z, and the set of integer numbers, excluding zero by Z* (Z* = Z — {0}).

In addition, when writing @ > 0 (or @ > 0), we mean that all coordinates of vector @ should
be positive (or non negative). Similarly, when writing A > 0 (or A > 0), where A is a matrix,
we mean that all elements of A should be positive (or non negative).

By |d|, we imply the application of the floor integer function to all coordinates of @. Similarly,

by |A], we imply the application of the floor integer function to all elements of matrix A.

2.2 Algorithmic Model - Nested for-loops

The methods proposed in this thesis may be applied to any code segment of perfectly nested
for-loops with uniform data dependences (see §2.3) [SF91]. That is, our algorithms are of the

form:
for (ji=li; 1 <wis j1++H){
for (jnzln; Jn < Un; Jn+ +){
Loop Body
}
}
where [; and uy are integer parameters, [, and ug (k = 2,...,n) are functions of the outer loop

indices. Specifically, they may have the form:

le = max([ frr(j1, - Je—1) - [far (1, -+ 5 Jk—1)])

and

u, = main([gr1(J, -5 Jk—1) 15 -+ o5 L9kr (1, -+ -5 Jk—1)])

where fi; and gi; are affine functions. Therefore, we are not only dealing with rectangular
iteration spaces, but also with more general convex spaces, with the only assumption that the
iteration space is defined as the bisection of a finite number of semi-spaces of the n-dimensional
space Z".

Each iteration of this code segment is represented by an n-dimensional vector

j: (jlvj??' Jj’n) S Zn7
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called as iteration vector. Each coordinate of the iteration vector represents one of the loop
indices. Coordinate j; represents the outermost loop index, while j, represents the innermost

one.

Definition 2.1 We define as iteration space the set of iteration vectors (representing iter-
ations), which are to be traversed during the execution of a nested for-loop code segment, as

described in page 12.
I =14 = (rodos- - d)lis € Z A1l < i S w1 < i <}

The iteration space J" can also be described with a system of linear inequalities. An in-
equality of this system expresses a boundary surface of the iteration space. Thus, J" can be

equivalently defined as:
J"={j e Z"Bj <b} (2.1)

Matrix B and vector b can be easily derived from the affine functions [, and w; and vice versa.

Each iteration j = (j1,72,---,Jn) € Z™ may be represented in the n-dimensional space by
point (j1,72,--.,Jn)- In consequence, the iteration space may be represented as a subset of Z",

as indicated in the following example.

Example 2.1: The following nested for-loops are consistent to the algorithmic model

described in this section.

1. Rectangular iteration space:

for (j1=0; 71 <7; j1++)
for (jo=0; jo <5; jo+ +){
Loop Body
}

Matrices B and 5, corresponding to this loop segment, can be derived as follows:

W<t 10 | 7
Jj12>0 N -1 0 F< 0
J2 < 5
Jj2 >0 0 -1 0

2. Trapezoidal iteration space:
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for (j1=0; j1 <7; j1++)

for (j2=0; j2 <9 —ji; jo++){

Loop Body

}

Matrices B and 5, corresponding to this loop segment, can be derived as follows:

n<rT 1 7
> —1 5

71 >0 N 0 < 0
J2 <9 -1 1 9
Jj2 >0 0 -1 0

3. Convex space:

for (71=0; 71 <7; j1++)

for (jo=max(0,1—j1); j2 <min(6,9—j1); j2 ++){

Loop Body

}

Matrices B and 5, corresponding to this loop segment, can be derived as follows:

1 <7 1 0 7
Jj1 >0 -1 0 0
J2 <6 - 0 1 Fe 6
J2<9—71 1 9
J2=>0 0 -1 0
J2>1—71 -1 -1 | -1

The respective iteration spaces can be represented in a 2-dimensional space, as depicted in

Figure 2.1.

According to the constraints concerning the form of loop bounds I;, u;, iteration space J"
may be a convex subset of Z". This model is compatible with several real applications, mainly
from the scientific areas of maths, physics, molecular biology, e.t.c. For example, we may
refer to some of them: Jacobi, Gauss Successive Over-Relaxation - SOR, Alternative Direction
Implicit Integration - ADI [GDAKOQ2a], Texture Smoothing - TS [PB99], 9-point Star Differential
Equation Stencil - PDE [AI91], Global Sequence Alignment - Fickett’s Algorithm [ABRY03].

Unless a loop transformation is applied, the iterations of a nested-loop code segment are

executed sequentially, in lexicographic order.

Definition 2.2 Itemtz'on; is lexicographically previous than iteration j_7 (; =< j_7), iff i = 4l Vi =

Lo k—1A jr <jh, k<n.
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g A

22=7-J1 (3) Convex iteration space
Figure 2.1: Example 2.1 - Graphical representation of 2-dimensional iteration spaces onto
ZTL
For example, it holds that (1,2,5) < (4,1,0) < (4,1,1) < (4,3, —8). In Figure 2.2, we have
depicted the lexicographic order, which is coincident to the program order, for the iterations of
the code segment in Example 2.1(3).
2.3 Dependence Vectors

Definition 2.3 Iteration j_é is dependent on iteration ﬁ iff

1. All three conditions are valid:

(a) j1 < j2 and
(b) Both iterations J1.Ja access the same memory data item M and

(¢) At least one of these memory data accesses is a write access,
or,

2. Iteration j; s dependent on iteration fé and iteration f; is dependent on iteration j;.
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Iz
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Figure 2.2: Lexicographic order of iterations for the iteration space of Example 2.1(3).

It is coincident to the order of execution of the iterations if no transformation is applied to the
iteration space.

In the first case, j_é s directly dependent on ﬁ, while in the second one, j; is indirectly

dependent on j_i .

When j_é is dependent on ﬁ, we equivalently say that there is a dependence between
iterations ﬁ and ]3. Formally, dependences are modelled by dependence vectors: d= j; —ﬁ.

Dependence analysis is especially critical for the parallelization of programs, since any two
iterations can be executed in parallel, if there is no direct or indirect dependence between them
[Ber66], [Ban94]. However, when modelling dependences using dependence vectors, we only deal
with direct dependences. Indirect dependences are implied.

Direct dependences are distinguished into three categories [Ban88|:

e flow or true dependences, if iteration ﬁ writes on M and dependent iteration j; reads
the value of M.

e anti-dependences, if iteration j_i reads the value of M and then dependent iteration j'_é

writes on M.
e output dependences, if both iterations ﬁ and ]E write on M.

In our algorithmic model, we only deal with flow or true dependences. Anti-dependences
and output dependences can be eliminated using more variables [CDRV98]. In addition, notice
that, in our algorithmic model (§2.2), all dependence vectors are considered as uniform, i.e.
independent of the indices of computations. Thus, we may construct the dependence matrix
D of a code segment, which consists of all dependence vectors starting from any iteration of J".

Each dependence vector forms a column of matrix D: D = [d;|da|...|d].
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Example 2.2: Let us consider the nested for-loop code segment:

for (51=0; N <7; j1++)
for (jo=max(0,1—j1); jo <min(6,9—j1); j2++){
Alj1,j21 = Blj1 +4,7521+A[j1 — 2,521
Blj1,j2d = Alj1 — 3,52+ 11 -Alj1,52 — 1]
¥
Iteration (ji,j2) reads matrix elements A[j; — 2,7j2], A[j1 — 3,2 + 1], A[j1,j2 — 1], which
are written by iterations (j; — 2,72), (j1 — 3,72 + 1), (j1,72 — 1), respectively. Thus, there are
true or flow dependences: dy = (2,0), dy = (3,-1), dy = (0,1). In addition, iteration (ji, j2)
reads matrix element B[j; + 4, j2|, which is later written by iteration (j; + 4, j2), imposing
anti-dependence dy = (4,0). Therefore, the dependence matrix of this code segment is: D =
2 3104
0

—1/1]0
code segment as follows:

. Notice that all four dependence vectors are lexicographically positive.

In order to eliminate anti-dependence dy = (4,0), we may equivalently rewrite the previous

for (j1=0; 71 <7; j1++)
for (jo=maz(0,1—j1); jo <min(6,9—7j1); jo+ +)
B_temp[j; + 4,521 = Blj1 + 4,521
for (j1=0; j1 <7; j1++)
for (jo=maxz(0,1—j1); j2 <min(6,9 — j1); j2 ++){
Alj1,72] = Btemplji +4,j21+ALj1 — 2, 2]
Blji,j21 = Alj1 — 3,52+ 11 -Alj1,52 — 11
}

The dependence matrix for the second nested for-loop of this code segment is: D =
310

-11]1

. These dependences can be graphically represented, as depicted in Figure 2.3.

:

2.4 Fourier-Motzkin Elimination Method

The Fourier-Motzkin elimination method (FME) can be used to convert a system of linear
inequalities AZ < & into a form, in which the lower and upper bounds of each element x; of
the vector ¥ is expressed in terms of the elements x1,...,x;_1 only. This fact is very important
when using a nested loop, in order to traverse an iteration space J" defined by a system of
inequalities. In this case, the bounds of index jj of the nested loop must be expressed in terms
of the k — 1 outer indices only. This means that the Fourier-Motzkin elimination method can
convert a system describing a general iteration space into a form suitable for use in nested loops.

After applying the Fourier-Motzkin elimination method, the eliminated system consists of a
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Figure 2.3: Example 2.2 - Graphical representation of flow dependences

very large number of inequalities describing the bounds of each variable z;, but some of them are
not necessary for the calculation of z;’s bounds. The unnecessary inequalities must be eliminated
to simplify the resulting system. In order to remove the redundant inequalities, two methods have
been proposed: the ad-Hoc simplification method and the exact simplification method.
A full description of the Fourier-Motzkin elimination method, the ad-Hoc simplification and the

exact simplification is presented in [BW95].

If the initial system of inequalities consists of k inequalities with n variables, then the com-
plexity of the Fourier-Motzkin elimination algorithm can be expressed by the formula ([Jim99]):

. k%" K on
Complexity = O(W) ~ O(<§)2 )

The Fourier-Motzkin elimination method is extremely complex, since it depends doubly expo-

nentially on the number of loops involved.

In addition, a single application of the method is almost always useless, since it results to a
lot of inequalities, which are not necessary for the calculation of the loop bounds. They should
be calculated a lot of times during the execution of the final code and impose an unacceptable
overhead to the final code execution. Thus, the above simplification methods should be applied,
in order to eliminate the redundant inequalities. The ad-Hoc simplification method, which
is quite fast, achieves to eliminate only some of the redundant inequalities. The rest of them
should be eliminated with the use of the exact simplification method. It applies once the Fourier-
Motzkin elimination method for each inequality of the final system, in order to check whether

it is redundant. Thus, it increases considerably the complexity of the final program.
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2.5 Time Scheduling

When parallelizing a nested for-loop, one should primarily reorganize the sequential execution
of iterations, in order to create parallel regions, which may be executed at the same time by
different CPUs. The final goal is the minimization of the total execution time. This is the case
when no other applications are running simultaneously on the same computing system and thus
we are not interested in the interaction among different applications.

The functions which map the iterations of a nested for-loop onto different time instances,
are called time scheduling functions. When devising a time scheduling function, our goal is
to enable the execution of as many parallel iterations as possible, so as to achieve the minimum
total execution time, without modifying the results produced by the initial sequential execution
of the program.

In order to certify that the results produced by the initial sequential execution are not
modified, a time schedule must respect the initial program dependences. In other words, it
should map iterations connected by a dependence vector to distinct execution steps. In this
way, it is ensured that only those iterations of the initial nested for-loop that have no direct
or indirect dependence among them will be executed in parallel. Thus, a time schedule is valid
when for each dependence vector, the source iteration is mapped to a time instance previous

than the destination iteration.

Definition 2.4 Time scheduling function s : J" — Z is valid for a nested for-loop, with a
dependence matrixz D, iff for each pair of iterations ﬁ,j} eJm: j_é = j_{ + J: de D, it holds that

s(j1) < s(ja).

2.5.1 Linear Time Scheduling

Linear time scheduling is a special case of time scheduling. It arises when the scheduling function
5(;) ig linear. Linearity is convenient, as we shall see in Chapters 4 and 5, since it results in a

regular assignment of iterations or tiles (see §2.6.2 for a definition of tile) to CPUs.

Definition 2.5 We define as linear time scheduling of a nested for-loop, any time scheduling

s11, such that: Vj e J" .
sull) = Fg
where I € Z1X | displl = min{Hd:-T . d; € D} and tg is an integer constant.
We notice that in Definition 2.5:

e Row-vector II is called as linear scheduling vector.
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e Integer constant tg is called as alignment constant.
e Constant displl is called as displacement constant.

Linear scheduling vector IT defines a class of hyperplanes such that: All iterations of J"
belonging to the same hyperplane are mapped to the same time instance. When using the
term hyperplane, we mean a beeline for a 2-dimensional iteration space, a ruled surface for a
3-dimensional iteration space and so on.

It can be proven [PTK98] that a linear time scheduling preserves depedences iff

vd, e D:1d;" >0 (2.2)

According to a linear time scheduling sy, the time required for the execution of a nested

for-loop (makespan) is calculated with the use of formula:

-, -,

£ =max{su(j):j€ J"} —min{su(j):j € J"}+1 (2.3)

Example 2.3: In this example, we will produce a parallel time schedule for the iterations of

the nested for-loop code segment:

for (j1=0; j1 <7; j1++)
for (jo=max(0,1—j1); j2 <min(6,9 —j1); jo+ +){
Alj1,72] = B_templj; +4,j21+A[j1 — 2, j2]
Blj1,j2] = Alj1 — 3,52+ 11 -Alj1,j52 — 1]

The dependences of this nested for-loop have been designed in Figure 2.3. Let us select

vector II = [ 11 }, as a linear scheduling vector for this iteration space.

Hd}T:[1 1}((2)):2>0,
Hd}T:[1 1}(_:))1>:2>0,
Hd3T=[1 1}(?):1>0,
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According to formula (2.2), I1 is a valid scheduling vector for this example. In addition, according

ST o
to Definition 2.5, displl = min{Ild; :d; € D} = 1. If we set t) = —1, then we get:
su(ji,j2) = Jj1+j2 — 1

In Figure 2.4 we have depicted the resulting time schedule. Notice that, according to formula

(2.3), the makespan is §= 9.
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Figure 2.4: Example 2.3 - Time Schedule produced by linear scheduling vector IT = [1 1].

The dashed lines indicate the class of hyperplanes-beelines defined by the linear scheduling vector
II (H; = constant). The grey areas include iterations that are mapped to the same time instance,
according to the scheduling function sy (j1,j2) = j1 + j2 — 1. Since displl = 1, each grey area
includes only one hyperplane.

If we select vector I = [ 2 3 }, as a linear scheduling vector:

Hd}T:[2 3](3):4>0,
Hd}T:[Q 3}(_31>:3>0,
Hd},Tz[z 3]<2>=3>0,
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According to formula (2.2), I is a valid scheduling vector for this example. In addition, according

ST o
to Definition 2.5, displl = min{Ild; :d; € D} = 3. If we set t) = —2, then we get:

271+ 3j2 — 2

3 ]

su(j1, je) = |

In Figure 2.5 we have depicted the resulting time schedule. Notice that, according to formula
(2.3), the makespan is = 8.
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Figure 2.5: Example 2.3 - Time Schedule produced by linear scheduling vector I1 = [2 3].

The dashed lines indicate the class of hyperplanes-beelines defined by the linear scheduling vector
IT (Tl = constant). The grey areas include iterations that are mapped to the same time instance,
according to the scheduling function sy1(j1, j2) = meﬁj Since displl = 3, each grey area
includes 3 hyperplanes.

2.6 Loop Transformations

2.6.1 Linear Loop Transformations

Linear transformations, which are often used in loop transformation literature can be distin-

guished into three main categories:
1. loop interchange

2. loop reversal
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3. loop skewing

Each linear loop transformation can be represented by a n x n transformation matrix 7.
Thus, iteration ; of the initial iteration space is mapped to iteration Tj of the final iteration
space and dependence vector d_; is transformed to dependence vector TJ;. A loop transformation
results in a code segment equivalent to the original one iff it preserves dependences, that is iff
all transformed dependence vectors are lexicographically positive (de € D it holds Td; = 6)
[WL91b].

If more than one linear transformations 77, T5 are successively performed, the final loop
transformation can be represented by the product of the respective transformation matrices
T =ToT1.

Loop interchange transforms iteration vector (ji,72) into iteration vector (jo,j1) (see Fig-
0 1
1 0

ure 2.6). This transformation can be represented by matrix 7' =

)= ()

A

] . Thus

iy =l

Loop Interchange
>——O——+O—>O
I

0 O O 9 O O O >—O—»O—0O

.I1 _.Iz
Figure 2.6: Graphical representation of an interchange transformation

Two successive loop interchanges can model a cyclic exchange of three loop indices, so

as the innermost loop index j3 to become the outermost one. First, interchange of loop
1 00

indices jo,j3 is represented by matrix 77 = Second, interchange of loop

0 1

0 0

0 0
indices ji,j2 is represented by matrix 7o = | 1 0 The total transformation is
0 1

o O = = O
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represented by matrix T' = TyT| =

O = O
= o O
o O =

Loop reversal is modelled by multiplying a loop index by —1. For example, the reversal trans-

1 0
formation depicted in Figure 2.7 is modelled by transformation matrix 7" = 0 1 ] .

—rO——>O—0
——rO—>0—0
5—>O0—>0—0
>—»>—»>—T
OO0
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A\ 4

I
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Loop Reversal Jq
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Figure 2.7: Graphical representation of a reversal transformation

Loop skewing adds a loop index multiple to another loop index. For a 2-dimensional iteration

1 OlorTzll f]’
[l 0 1

where f € Z. For example, the transformation shown in Figure 2.8 is represented by
11
0 1]

All above loop transformations are unimodular transformations and are represented by

space, it can be modelled by a transformation matrix 7" =

matrix T =

unimodular matrices.

Definition 2.6 A square matriz A is unimodular, if it consists of only integer elements and its

determinant equals to £1.

Unimodular transformations have a very useful property: their inverse transformation is
integral as well. On the other hand the inverse of a non-unimodular matrix is not integral,
which causes the transformed space to have holes. We call holes the integer points of the

transformed space that have no integer anti-image in the original space.
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Figure 2.8: Graphical representation of a skewing transformation
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Definition 2.7 Let A be an m x n integer matriz. We call the set L(A) = {y|y = AZNT € Z"}

the lattice that is generated by the columns of A.

Consequently, we can define the holes of a non-unimodular transformation as follows: if T is
a non-unimodular transformation, we call holes the points j_7 € Z™, such that T‘lﬁ ¢ Z". On
the contrary, we call actual points of a non-unimodular transformation 7" the points ]T; e 7", for
which it holds T*137 eZl" & j_; € L(T). Figure 2.9 shows the image of an iteration space after
the application of a unimodular and a non-unimodular transformation. Holes are depicted with
white dots and actual points with grey ones. It has been proven in [Ram92| that if T is a m x n

integer matrix, and C'is an n x n unimodular matrix, then £(T") = L(T'C).

—

Definition 2.8 We say that a square, non-singular matricx H = [h_i,...,hn} € R™™ is in
column hermite normal form (HNF) iff H is lower triangular (h;j # 0 implies i > j) and for all

i> 7,0 < hij < hy (the diagonal is the greatest element in the row and all entries are positive.)

As proven in [Ram92|, if 7" is a m X n integer matrix of full row rank, then there exists
an n x n unimodular matrix C such that TC = [fO] and T is in hermite normal form. Every
integer matrix with full row rank has a unique hermite normal form. It holds that £(T") = ,C(T),
which means that an integer matrix of full row rank and its hermite normal form produce the
same lattice. This property is very useful for code generation of tiled spaces, as we shall see in
Chapter 3.
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Figure 2.9: Unimodular and non-unimodular transformations.

The main difference between unimodular and non-unimodular transformations is that: The former
constitute a 1-1 function from Z™ to Z™. The latter results to “holes” in the transformed space,
which do not have an integer anti-image in the initial space, as depicted by white dots in this
figure.

2.6.2 Tiling or Supernode Transformation

Fine vs. Coarse grained parallelism

When parallelizing a code segment, apart from performing a dependence analysis and determin-
ing which iterations may be executed simultaneously (as seen in §2.5), we should also determine
which iterations will be executed by which processors. For example, the schedule depicted in
Figure 2.4, can be implemented by assigning a row of iterations to each processor, as seen in
Figure 2.10. This partitioning of the iteration space can supply an intuition of fine grain par-
allelism [PTKO98]. The goal of this mapping is the parallel execution of as many iterations as
possible.

In Figure 2.10, we have erased dependences among iterations assigned to the same processor.
Only dependences among iterations assigned to different processors are represented by black
arrows. These dependences correspond to data computed in a processor, which should be used
in computations executed by another processor. Thus, they correspond to data that should
be somehow transferred from a processor to another. This transfer implies a communication
overhead, which may be minimal, when a systolic parallel architecture is embedded on chip
[PTK98], or vast when implemented upon a message passing interface, such as MPI [MPI94],
[MPI97].

The volume of data that must be transferred may be large enough to annihilate the ad-
vantages of parallelization. It is strongly possible that the parallel program will take longer to
execute than the sequential one. The problem in this implementation is not only the amount of

data to be transferred, but also the number of distinct messages encapsulating the data. Thus,
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Figure 2.10: Fine-grained parallelism.

In this figure, iterations along the same dashed line are executed at the same time. Iterations
inside the same grey area are executed by the same processor. Dependences among iterations
assigned to the same processor have been eliminated. With black arrows, we have depicted only
dependences among iterations assigned to different processors.

in order to achieve an efficient, parallelization one should devise a way to
1. reduce the amount of data transferred and
2. group them into fewer messages.

Both of these objectives can be achieved by a supernode or tiling transformation, that
is by grouping together a number of neighboring iterations and considering them as an atomic
unit. Then, instead of scheduling iterations, we schedule tiles. Communication occurs before
and after the execution of a whole tile. In other words, a processor should receive the data
required for the computation of a tile, before the execution of this tile’s iterations start, and
send data computed inside this tile, after the execution of the entire tile has been completed.
Thus, apart from reducing the amount of data to be transferred, we may also group in a single

message the transmission of data computed in the same tile, as seen in Figure 2.11.

An Intuitive Definition of Tiling Transformation

In general, when applying tiling, an n-dimensional iteration space J" is partitioned by n indepen-
dent families of parallel hyperplanes into n-dimensional hyperparallelepipeds, named as tiles.
Each tile is represented by an n-dimensional vector j_:9 = (jf,jf, e ,j;f) € Z™, called as tile
vector (in correspondence to iterations being represented by iteration vectors). In Figure 2.12
we have indicated the tile vector, which identifies each tile.

In addition, each tile has a unique starting iteration, called as tile origin iteration. Iter-

ation (0,...,0) is the origin iteration of tile (0,...,0). In order to identify the origin iteration
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Figure 2.11: Coarse-grained parallelism.

[terations within the same parallelogram are grouped together in the same tile. Neighboring tiles
of the same shade are assigned to the same processor and executed successively. Dependences
among iterations assigned to the same processor have been eliminated. In addition, dependences
with origin inside the same tile have been depicted with arrows of the same shade. The respective
data transfers can be grouped in a single message.

-

of another tile j;é, we should parallely shift tile (0,...,0), so as to be congruent with tile ;2.
Then, the iteration of tile j;é, which is congruent with iteration (0,...,0) is the origin iteration
of tile j;é. In Figure 2.12 we have pointed out the origin iteration of each tile. Notice that
tile origin iterations may not be included in the iteration space. For example, in Figure 2.12,
iteration (0,...,0), which is the origin iteration of tile (0,...,0), is not included in J". In order
to distinguish this iteration from other tile origin iterations, we have depicted it as a white dot.
A tiling transformation can be uniquely defined by n vectors-edges of the tiles-hyperparal-
lelepipeds. Thus, a tiling transformation can be defined by an n x n matrix P, called inverse
tiling matrix, whose columns consist of the above mentioned vectors-edges. For example, in
Figure 2.13, we have indicated how the inverse tiling matrix is derived from Figure 2.12.
Dually, a tiling transformation can be defined by an n x n matrix H = P~!, called tiling
matrix. FEach row-vector of H is perpendicular to a class of hyperplanes partitioning the

iteration space into tiles.

The tiling matrix H has some important properties concerning tiling transformation:

1. Iteration j is mapped to tile j_é = |Hj]

2. Tteration j_é = H_ljtq is the origin iteration of tile fs_
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Figure 2.12: Tiling Transformation.

The iterations inside the same grey area are mapped to the same tile. Each tile is identified by a
unique tile vector, which has been indicated inside the respective grey area. Black dots represent
the origin iterations of each tile. Notice that tile origin iterations may not be included in the
iteration space. See, for example, the tile origin iterations of tiles (0,0) and (1,0), which have
been designed as white dots.

Notice that, as far as parallel processing is concerned, tiling transformation is useful only
in case the iteration space cannot be partitioned into independent subsets. This happens when
the class of dependence matrix D equals to n. Otherwise, the independent subsets may be
assigned one to each processor [WL91b], [Hol92], [SF92], [PC89]. Then, there is no need for
communication among processors during the execution of the iteration space (see, for example,

Figure 2.14).

A Formal Definition of Tiling Transformation

Formally, tiling transformation is defined as follows:

AL QnTT‘_ LH;J

where vector | Hj| identifies the coordinates of the tile that index point j = (ji,Ja, ..., Jjn) is
mapped to, and f— H_ILHJJ gives the coordinates of j within that tile relative to the tile
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Figure 2.13: Construction of Tiling Matrices.

Matrix P consists of the edge-vectors of the tile-hyperparallelepiped. Matrix H is the inverse of
matrix P.

origin. Thus, the initial n-dimensional iteration space J" is transformed to a 2n-dimensional
one, consisting of the n-dimensional space of tiles (tile space) and the n-dimensional space of

indices within tiles (tile iteration space).

e The tile space J° is defined as follows:
I = {5555 = |Hj), ] € J"} (2.4)
It can be also written as

IS == (7, g)iS € ZA1 <P <wl 1 <i<n}

S S
where 12, u;

tiling matrix H, as described in [AI91], [GAKO03] and in Chapter 3 of this thesis. Each point

45 in this n-dimensional integer space J° is a distinct tile with coordinates (57,55, . ..,75).

can be directly computed from the functions lq,...,l,, u1,...,u, and the

e The tile iteration space
TIS ={je Z™0< |Hj|] <1} (2.5)

contains all points that belong to the tile starting at the axes origins.

e The tile origin space
TOS = {jo € 2"ljo = H™'j%.5% € 7} (2.6)

contains the origins of tiles in the original iteration space.

Thus, it holds: J" M, 78 and J5 25 TOS. Note that all points of J™ that belong to the

same tile, are mapped to the same point of J°. Note also that TOS is not necessarily a subset of



2.6 Loop Transformations 31

\

-

Figure 2.14: When the class of dependence matrix D is less than n

we can partition the n-dimensional iteration space into independent subsets. Thus, we achieve
parallelization of this iteration space with no communication at all.

J™, since there may exist tile origins which do not belong to the original iteration space J", but
some iterations within these tiles do belong to J". These tile origins are depicted in Figure 2.12

by white dots.

Points belonging to the same tile with tile origin j_(; € TOS, satisfy the system of inequalities
0<H(j—jo) <1 (2.7)

In order to deal with integer inequalities, we define g to be the smallest natural number such
that gH is an integer matrix. Thus, we can rewrite the above system of inequalities as follows:

0<gH(j—jo)< g+

0<gH( —jo) < (9—1) (2.8)

S L e
—gH 0

Equivalently, system (2.8) becomes:

We denote

S —Jo) =¥ (2.9)
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Note that if jo = 0, S(j — j_(;) < §'is satisfied iff a point, belongs to T'IS.

Example 2.4: If we apply the tiling transformation of Figure 2.12 to the iteration space of
Example 2.3, then, as shown in Figure 2.12,

1. J" is transformed by matrix H to the tile space

JS - {<07 0)7 (07 1)7 (07 2)7 (07 3)7 (17O>7 (17 1)7 (17 2)7 (17 3)7 (27 1)7 (27 2)}

2. The tile iteration space contains the points T1S = {(0,0), (0,1),(1,0),(1,1),(2,0),(2,1)}.

3. The tile space is transformed by matrix P to the tile origin space
TOS = {(Oa 0)7 (Oa 2)7 (O, 4)5 (Ov 6)5 (37 *1)7 (3v 1)7 (37 3)5 (37 5)7 (67 0)7 (65 2>}

Note that points (0,0), (3, —1) € TOS do not belong to J".

Since g = 6, the system of inequalities S(;— j_.f) < § describing the boundaries of a tile is

2 0 5

1 3 11— 7 5
]‘1 ]‘01 <

-2 0 J2 — Jo2 0

-1 -3 0

2.6.3 Tile Dependences

Asg seen in page 27, one of the final goals of tiling is to construct a more efficient parallel execution
schedule for a specific application. Instead of scheduling iterations, as in §2.5, we should now
schedule tiles. Thus, instead of dependences among iterations (see Definition 2.4), we should
take into consideration the dependences among tiles.

Dependences among tiles are given by the column-vectors of the tile dependence matrix

D?® ., which is defined as follows:
D% = {d¥d® = [H(jz, +d)),d € D, jy, € 2" A | Hj,| = 0},

where j;) denotes the index points belonging to the first complete tile starting from iteration
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0,...,0) (tile (0,...,0)).

Given an algorithm with dependence matrix D, for a tiling to be legal, it must hold HD > 0
(see [IT88], [RS92]). This ensures that tiles are atomic and that the initial execution order is

preserved. In the opposite case, any execution order of tiles would result in a deadlock (see
Figure 2.15).

2 Iteration space Tiling matrices
Hzlfﬂ
6(1 3
tile (0,3) |
o o s_[310
\j\j tile (1,3) {_1 2}
o
tile (0,2) m
W . Dependence matrix
tile (1,2)
° ® 10
tile (0,1) \N tile (2,2) D:Ll J
o)
W tile (1,1) \j
9 0
tile (0,0) \N tile (2,1)
(@) (@) (0] Q Q >
tile (1,0) 1

Figure 2.15: Validity of a tiling transformation.

All elements of matrix HD should be non-negative. In this figure hady < 0. Thus, we can find
no time scheduling of tiles which preserves dependences. For example, tile (1,2) is dependent on
tile (1,1) and tile (1,1) is dependent on tile (1,2). Assuming an atomic execution of tiles, this
tiling results to a deadlock.

In this thesis, as in [GSKO01], we assume that all dependence vectors are smaller than the
tile size, thus they are entirely contained in each tile’s area. This means that all elements of
matrix HD are smaller than 1 (h:d_; <1,Vi,j=1,...,n) [Xue97b], or, alternatively, that the
tile dependence matrix D® contains only 0’s and 1’s. This assumption is quite reasonable, since
dependence vectors for common problems are relatively small, while tile sizes may result to be
orders of magnitude greater in systems with very fast processors. In this case every tile needs

to exchange data only with its nearest neighbors, one in each dimension of .J5.
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2.7 Overlapping vs. Non-Overlapping Execution

2.7.1 Non-Overlapping Execution Policy

In [HS98], Hodzic and Shang have presented a scheme for scheduling loops that have been
transformed by a tiling transformation. Their approach is to minimize the total execution time,
as follows: First, the optimal tiling matrix H is determined and then the tiling transformation H
is applied to the original iteration space. The resulting tile space J° is scheduled using a linear
time hyperplane II. All tiles along a certain dimension are mapped to the same processor. Total
execution of tiles consists of successive computation phases interleaved with communication ones.
A processor receives the data needed to execute a tile at time step 4, performs the computations
and sends to its neighboring processors the boundary data, which will be used for tile calculations

in time step ¢ + 1.

Thus, the total execution time is given by formula:

Tnonoverlap = p(tcomp + tcomm) (210)

where § is the number of time steps needed to complete the parallel execution (makespan),

tcomp 18 the execution time of a tile and .o, is the communication time.

Therefore, the overall parallel loop execution consists of atomic computations of tiles inter-
leaved with communication for the transmission of the results to neighboring processors. Since
the tile space J° has only the unitary dependence vectors (see §2.6.3 and §B.5), the optimal

linear time schedule can be easily proven to be: II = [1 1...1] [HS98]. In Figure 2.16, the

non-overlapping execution policy is shown.

A possible implementation of this execution model can be summarized by the following

pseudocode:

foracross (t1=lls; 1 < uf; t1+ +)

foracross (tn,1=l;§_1; th—1 < ug_l; tn—1 + +)
/*Sequential execution of tiles assigned to this CPU*/
for (tn=ln; tn <up; tn++){
Receive data from neighboring tiles
Compute this tile
Send data to neighboring tiles
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Figure 2.16: Non-overlapping Execution Policy

for a tile space, using six processors. We see that the overall schedule has computation subphases
interleaved with communication ones.

2.7.2 Overlapping Execution Policy

The previous quite straightforward model of execution results in very good execution times, since
it exploits all inherent parallelism at the tile level. However, one of its important drawbacks is
that each processor has to wait for essential data before starting the computation of a certain
tile, and wait for the transmission of the results to its neighbors, thus resulting in significant
idle processor time. It would be ideal if a node was able to receive, compute and send data at
the same time. Modern network interfaces (NICs) have DMA engines that enable them to work
in parallel with the CPU. This means that some communication work can be overlapped with
actual CPU cycles. In fact, even some part of the non-blocking communication needs the CPU,
i.e. DMA initialization. Nevertheless, all subsequent data transferring actions can be ideally
overlapped with useful computation.

However, what really imposes such inefficient processor utilization, is the data flow between
successive time steps. Specifically, it seems that computations and respective communication
substeps for each time step should be serialized to preserve the correct execution order. Every
processor should first receive data, then compute and finally send the results to be used at
the next time step by its neighbor. A much more thorough look at the correct data flow in
the non-overlapping case, reveals the following interesting property: If we slightly modify the

initial linear schedule, then we could overlap some communication time with computations. This
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means that, in each time step, the processor should send and receive data that is not directly
dependent to the data computed at this step. A valid time execution policy would be for a
processor to receive data from all neighbors to use them at k + 1 time step, send data produced
at previous time step (k — 1) and compute its results (Figure 2.17). In this case, every processor
computes a tile and, at the same time, sends data produced in the previous step and receives
data needed in next one. In Figure 2.17 the overlapping execution policy is shown. A more

detailed description of this schedule can be found in [GSKO01], [STK02], [Sot04].

.
.
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Figure 2.17: Overlapping Execution Policy.

Consider, for example, processor P3 at k time step: while it computes a tile, it concurrently
performs the following: sends the results produced during k — 1 time step and receives data
from neighbors, to be used during the computation of the next tile at £ 4+ 1 time step. Note
the arcs shown in this figure. They depict the actual flow of data between successive time steps
(computes-sends-receives) in a pipelined way. The outcome of this schedule is to have successive
computations overlapped with communication phases, thus 100% processor utilization.

If we implement the overlapping of computation and communication, then we will have
the following scheme: A processor first initiates all the non-blocking send operations and then
performs the actual atomic tile computations. While the processor performs computations, the
NIC is receiving data from neighbors and sending previously computed data to others as well.
When communication work is finished, the processor receives an interrupt.

A possible implementation of this execution model can be summarized by the following

pseudocode:
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foracross (t1=lf; t1 < uf; t1+ +)

foracross (tn—1=lsf1; th—1 < Ug—l; th—1++)
/*Sequential execution of tiles assigned to this CPU*/
for (tp=ln; tn <un; tn++){
Initialize DMA card
Compute this tile
Wait for send & receive to complete

Synchronize with neighbors
}

According to the previous properties, the total execution time for the overlapping schedule,

as deduced from Figure 2.17, is given by:

Toverlap = p(tstm't,dma + maX(tcompy tcomm,clma) + tsynchro)a (211)

where § is the number of time steps of the parallel execution (makespan). The time needed to
initiate the DMA engine is ts;rt_dma, tecomp is the tile execution time, ¢comm_dmaq is the communica-
tion time which can be overlapped with computation and Zyy,cnr0 is the required synchronization
time between successive time steps. In correlation to the parameters used in equation (2.10), it
holds that: tinit_dma + tcomm-dma + tsynchro = teomm

Since the concept of overlapping of actions is crucial, it should be noted that the actions
initiated by a non-blocking call are overlapped with the actions initiated by calls following the
non-blocking call. On the contrary, a blocking call implies no overlapping of actions, since a
following call can be initiated only after the blocking call has completed.

In order to achieve actual overlapping of computation and communication, hardware should
assist. The CPU and the NIC must be able to work simultaneously on different tasks. The most
important issue is support from DMA, which should exist and be enabled to the NIC. Another
aspect is that the invocation of DMA communication should be done in user level (User-Level
DMA), without kernel intervention. Furthermore, zero-copy communications should be used and
finally, the software packetization process involved in every communication must be avoided. All

these prerequisites are discussed in the following section.

2.8 Hardware High Performance Features

Recent advances in high speed networks and improved microprocessor performance are making
clusters of workstations an appealing vehicle for cost effective parallel computing. The trend
in parallel computing is to move away from custom-designed platforms of the established HPC

industry to general purpose systems consisting of loosely coupled components built up from
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single or multi-processor workstations or PCs.

The de-facto 100Mbps networking of commodity clusters can be a bottleneck for many ap-
plications, when scaling beyond a small number of nodes. The last years, new networking tech-
nologies such as SCI [Hel99], Myrinet and Gigabit Ethernet offer increased bandwidth and low
startup latencies, which however, are never efficiently utilized by user applications. Therefore,
high-performance clusters are introduced, which provide the computationally intensive appli-
cations with increased performance using special communication primitives, such as Zero-Copy

Protocols and DMA transfers.

2.8.1 Zero-Copy Protocols

Network protocol stacks, such as TCP/IP, aggravate the communication procedure with the
extra copying of data sent or received, to and from kernel space, respectively. As Figure 2.18
depicts, when sending data from an application (user space) buffer to the network, data must
be initially copied from the application buffer to kernel buffers. TCP, IP and network headers
must be added and then, as a packet, transferred to NIC’s buffer for transmission. A respective

procedure takes place when data reach the receiving node.

buffer

packet 2

|TCP| 3 |NET| XX

Figure 2.18: Single-Copy Protocol and packetization process

The previous sequence of actions is unavoidable when using legacy network technologies,
but could be avoided when novel communication technologies are used. SCI achieves Zero-Copy
Communication, since it supports a Distributed Shared Memory approach, which is implemented
using kernel area memory mapped regions for communication. An SCI communication scenario
involves the following stages: A process in an SCI node exports a memory segment, which is
imported by a process that resides in another SCI node. Every imported memory segment is
directly mapped to the PCI I/O space of the PCI-SCI NIC. It is part of the importer’s (process)
virtual memory through the prior invocation of an SCIConnectSegment () driver call. When the
importing node needs to send data, it just writes them directly to the imported memory segment

(thus, no kernel copies). Data are transferred to the exporter’s memory and communication is
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performed, without any kernel intervention. No other data processing is needed within each

send.

2.8.2 DMA transfers

Message data can be usually transferred in two ways: Programmed I/0 (PIO) mode and DMA
mode. In PIO mode, CPU handles data transferring completely, word by word. For example,
data transferring of 1Kwords involves the initial copying of these words from main memory to
the NIC’s buffers with the aid of CPU. From a parallel application’s point of view, these are
considered “lost” CPU cycles, since useful calculations could have been executed instead. On
the contrary, using DMA mode, CPU just programs the NIC’s DMA engine with the information
of which data to transfer from main memory and where to send it. CPU is not used (or blocked
from a program’s perspective) during the transfer and can perform other (useful) tasks.

The DSM feature of SCI allows the efficient use of its DMA capabilities. Using special
SCI driver calls, the system returns physically contiguous allocated memory. This is performed
using the __get free pages() kernel routine. The allocated memory is first “pinned down”
and then mapped to user’s virtual memory (Figure 2.19). User is able to read/write that
memory region like the ordinary memory regions returned by LIBC malloc(). Despite the
fact that DMA transfer is only invoked as a kernel system call, the complete transfer of the
specific memory area will be performed with only one DMA invocation. On the contrary, even
if the NIC in Figure 2.18 was DMA enabled, a new DMA invocation should take place for each
{data,TCP,IP,NET} packet, which would be time consuming.

mapped to

memory mapped
"RAM device"

SCI
network

Figure 2.19: Locked and memory mapped “RAM device” for SCI communications
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Automatic parallel code generation

for tiled nested loops

In this chapter, we briefly describe an approach for the problem of automatically
generating parallel code for tiled nested loops. Our method is applied to general
parallelepiped tiles and non-rectangular space boundaries as well. It consists of two

steps:

1. generating sequential tiled code

2. parallelizing the sequential tiled code
In order to generate sequential code efficiently, the original problem is divided into
the subproblems of enumerating the tiles and sweeping the points inside every tile.

In order to parallelize the sequential tiled code, we address issues such as data dis-

tribution, iteration distribution and automatic message passing.
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3.1 Introduction

The tiling transformation, as described in §2.6.2, has been used in literature in two different

contexts:

e in order to ensure the locality of data references and reduce the overall execution time

through an efficient utilization of cache memory levels [Jim99]

e in order to parallelize the execution of a nested loop code segment with dense dependences,
as described in §2.2 and §2.6.2 of this thesis.

A lot of research has been conducted, concerning the selection of optimal tile size and shape, that
reduce the communication cost [BDRR94], [Xue97a], or the time processors remain idle [HS02],
[HCF99], [XC02]. However, the parallelizing compilers community has been pessimistic about
using non-rectangular tiling transformations to execute nested loops in distributed memory
machines. General parallelepiped tiling has not been used in either commercial or research
compilers ([AMC97], [AL93], [CMZ92], [FHK*91], [SLR*95]). This is due to the fact that a
significant overhead is imposed by non-rectangular tiling to both compile time and run time of
the final parallel code. Apart from [ACNT00], [XC02], that present some experimental results
for 2-dimensional spaces, all previous research on non-rectangular tiling is purely theoretical.
All complete frameworks for the automatic generation of parallel tiled code, such as the one
presented in [TX00], can be applied only for rectangular tiling. In this chapter, as in [GAKO03],
we present a method for automatically producing non-rectangular tiled code without imposing
a prohibitive overhead either at compile or at run time.

The parallelization of a nested loop code segment, as depicted in Figure 3.1, consists of the

following three steps at minimum:

1. A dependence analysis is conducted [Ban88], [Pug92], so as to determine the optimal
tiling transformation, which minimizes the communication overhead among processors
[BDRR94]|, [Xue97al, or the time processors remain idle waiting for the data needed to

arrive from neighboring processors [HS02], [HCF99], [XC02].

3

2. The initial code segment is converted to serial tiled code, according to the tiling transfor-
mation selected in the previous step, as described in [GAKO02b], [GAKO3]. This conversion

is consisted of two substeps:

(a) Producing the bounds of the tile space from the bounds of the iteration space and

(b) Producing the appropriate boundary expressions for traversing the internal of each

tile, as well as determining the incremental steps of each loop index.
3. Parallelizing the serial tiled code, as described in [GDAKO02a]. This step consists of

(a) the distribution of data and computations among processors and
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(b) the automatic generation of the message passing primitives

Initial Dependence Optimal Tiling Sequential Parallelization Parallel
. - P ey ——— >
Code Analysis Tiling Transformation | Tiled Code Tiled Code

Figure 3.1: Automatic parallel code generation for tiled iteration spaces.

After selecting the optimal tiling transformation, the initial untiled code segment should be
converted into serial tiled code. Then, the serial tiled code should be parallelized.

3.2 Generation of Serial Tiled Code

In this section, we elaborate on generating tiled code that will traverse an iteration space J"
transformed by a tiling transformation. We call this code sequential tiled code. By applying
tiling to J", we obtain the tile space J, the tile iteration space TIS and the tile origin space
TOS. In §2.6.2, it was shown that tiling transformation is a Z" — Z2" transformation, which
means that a point j € J™ is transformed into a tuple of n-dimensional factors ( s j_;;), where 7,
identifies the tile that the original point belongs to ( jo € J° ) and jp identifies the coordinates of
the point relevant to the tile origin (j, € T1S). The sequential tiled code reorders the execution
of indices enforced by their lexicographic order, resulting in an execution order described by the

following scheme:
FOR (EVERY tile IN tile space J°) TRAVERSE THE POINTS IN ITS INTERIOR

According to the above, the sequential tiled code consists of a 2n-dimensional nested loop. The n
outermost loops traverse the tile space J°, using indices jf, j2s, e ,j;?, and the n innermost loops
traverse the points within tile (j7,j5,...,5), using indices j/, j5, ..., j,. We denote I3}, u; the
lower and upper bounds of index j ,f , respectively. Similarly, we denote [}, u) the lower and upper
bounds of index j;.. In all cases, lower bounds (l,f or ;) are of the form: max(lx 0,11, ..) and

upper bounds (uf or uy,) of the form: min(ugp,ug1,...), where I j, ug ; are affine functions of
S

 corresponds to substep

the outermost indices. The calculation of factors lf, cen l;? and uf, LU

2a of §3.1, while the calculation of factors I{,... 1/, and v}, ..., u], corresponds to substep 2b.

3.2.1 Enumerating the tiles

A conventional approach

Ancourt and Irigoin in [AI91] dealt with the subproblem of traversing the tile space, by con-
structing an appropriate set of inequalities. According to their approach, a tile j_é belongs to

the tile space J* (jé € J9), iff there is an iteration 7, which fulfills both criteria:
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1. It belongs to the iteration space J™. That is, j’e J" &
Bj<b

(recall formula (2.1)).

2. Tt belongs to tile j_:g with origin iteration j, = H‘lj_é (recall formula (2.6)). Note that,
according to the definitions given in §2.6.2, a point j belongs to a tile with tile origin o
iff it satisfies the set of inequalities: S(j — jo) < §. Replacing in this set jo = H ! ‘_:9, it

can be equivalently written as:

—al H Y
gl —gH J

Combining the above systems, we obtain the final system of inequalities:

0 B < :
—gl  gH (i ) < ( _,> (3.1)
J

gl —gH

w

Ancourt and Irigoin propose the application of Fourier-Motzkin elimination method to the above
system in order to obtain proper formulas for the lower and upper bounds of the 2n-dimensional
loop that will traverse the tiled space. Note that the n outermost loop boundaries produced are
appropriate for traversing the tile space. The n innermost loop boundaries are appropriate for

scanning the interior of tiles and can be presently ignored.

Example 3.1:  Consider the following nested loop code segment:

for (j1 =0; 71 <39)
for (jo=0; jo <29){
Alj1, jo]=A[j1 — 1,2 — 2|+A[j1 — 3, j2 — 1];
}

The corresponding iteration space J" is: J™ = {(j1,72)]|0 < j1 < 39,0 < jo < 29}. Let us apply

6 4
2 8
which is legal [RS92] (since HD > 0) and has both communication and scheduling-optimal shape
((BDRR94], [HS98], [HS02], [HCF97], [Xue97a]), for the specific problem. Then, as shown in

a tiling transformation defined by matrix

11
H= [ D ] or, equivalently, by P =

T 20 20
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Figure 3.2: Example 3.1: Representation of the spaces used.

(a) The initial iteration space is partitioned into identical parallelogram tiles, which are identified
by a unique vector indicated inside each tile. The origin of each tile has been illustrated by a
grey dot. Some of the origins may not belong to the initial iteration space J™. (b) The tile
iteration space includes all iterations of tile (0,0), which starts at the axes origin. (c) The tile
space J* is derived from the iteration space by formula (2.4). All iterations of the the same tile
in subfigure (a) are mapped to only one point in J of subfigure (c).
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Figure 3.2b, T1S contains the points {(0,0), (1,1), (1,2), (2,1), (2,2), (2,3), (2,4), ..., (7,5),
(7,6), (7,7), (7,8), (8,7), (8,8), (8,9), (9,9)}. In addition, as shown in Figure 3.2¢c, J" is
transformed by matrix H to the tile space J% = {(—3,3), (=3,4), (=2,1), (—2,2), (—2,3),
(=2,4),...,(6,-2), (6,—1), (6,0), (7,—2), (7,—1)}. In the sequel, as shown by the grey dots in
Figure 3.2a, the tile space J° is transformed by matrix P to TOS = {(—6,18), (-2,26), (—8,4),
(—4,12), (0,20), (4,28), ..., (28, —4), (32, —4), (36,12), (34, —2), (38,6)}.

The set of inequalities describing the iteration space J" is:

10 39
1 ] 2

0 J < 9
-1 0 P2 0
0 -1 0

The system of inequalities S(j — jo) < § (see formulas (2.8), (2.9)) describing a tile is (since
g =20):

4 -2 19
—1 3 11— 7 19
J1 — Jo1 <
-4 2 J2 — jo2 0
1 -3

Thus, according to formula (3.1), the final system proposed my Ancourt and Irigoin for the

calculation of loop indices is:

0 0 0 39
0o 0 0 1 29
0 0 -1 0
0 0 ~1 ( {S ) .

20 0 —2 7 19
0 —20 -1 3 19

20 0 -4

0 20 1 -3

This system of inequalities is not suitable for a nested loop code segment, since it contains
no inequalities for the expressions of outer loop boundaries of jls and jQS . An application of

the Fourier-Motzkin elimination method (see §2.4) can convert it to the equivalent system of
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inequalities:

o O O o v O O

10

—10

—20
0

0

0

20

=== = O O O O O O o o

= W = O O O O O O O o o o o o o o o o

1

~
IN

<. .

14

19

19
87

39
19

o © o O

Only the eight first rows of this system are useful for traversing the tile space J°. We may cut

them off and go on with the system of inequalities:

wnl
IN

14

19
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An application of the ad-hoc simplification method [BW95] can detect and eliminate two redun-

dant inequalities. Finally, the simplified system

1 0 7
-1 0

1 4 j—é - 14

3 2 19
-1 —4
-3 =2

may be used for automatically producing the code, which scans the tile space:

for(ji=-3; j{ <7; jp++)
48 —4-3jS —i7 —3j{
for (jmmax ([, [Z580Y) 5§ <min(| M), (B0 )5 e
Execute tile (j7,75)

}

Reducing the compile time overhead of tiling

In order to reduce the overhead imposed at compile time by tiling, we should primarily reduce
the complexity of the Fourier-Motzkin elimination method used. Recall from §2.4 that it depends
doubly exponentially on the number of loops involved. Thus, in order to decrease the compile
time overhead, we should first of all examine whether we may reduce the number of loop indices
involved in the set of inequalities (3.1).

The subproblem of traversing the tile space J° has been considered by many authors as
an example of applying the non-unimodular tiling transformation to the original iteration
space. More specifically, Ramanujam in [Ram92] and [Ram95] applied the non-unimodular
tiling transformation to the set of inequalities B; < b describing the iteration space, as follows:
Bj<b=BH 'Hj<b=

BPj5 <b (3.3)

Here again, the application of Fourier-Motzkin elimination method to the derived system of

inequalities is proposed, in order to obtain closed form formulas for tile bounds lls Yo ,l;j and
S S
uy, ..., Uy

Unfortunately, the previous approach fails to enumerate tiles exactly. This is because the
system of inequalities in (3.3) is satisfied by points in the tile space J%, whose tile origins belong

to J". However, as stated in §2.6.2, there exist some points in TOS that do not belong to J".
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Although these points do not satisfy the preceding systems of inequalities, they must be traversed
as well. In Figure 3.2a, tiles in the lower boundaries, such as (-3,3), (-2,1), (4,-2) and others, are
not scanned by this method, because their origins do not belong to the original iteration space
J™. Consequently, a modification is required, so that Fourier-Motzkin elimination method can
scan all tiles correctly. As shown in Figure 3.5, what is needed is a proper reduction of the lower
bounds and/or a proper increase of the upper bounds of our space, in order to include all tile
origins. Lemma 3.1 determines how much we must expand space bounds, in order to include all
points of TOS.

Lemma 3.1 If we apply tiling transformation P to an iteration space J", whose bounds are

expressed by the system of inequalities Bj < 5, then for all tile origins j_(; e TOS, it holds:

Bjo <V, (3.4)
where U is determined by the expression:
9-1y
r=1

where ﬁ_; is the i-th row of matriz B, p; is the r-th column of matriz P and (ﬁ_; cpr)T =
max(—pf; - pr,0).

Proof: We suppose that point ; € J" belongs to tile with origin j_(;. Since P consists of n
linearly independent vectors, 5 can be expressed as the sum of ]T) and a linear combination

of the column-vectors of the tiling matriz P:
J=Jo+ Y i (3.6)

In addition, as in formula (2.8), the following system of inequalities holds: 0 < gH(f—j_é) <

(g —1). The i-th row of this inequality can be rewritten as follows: 0 < h; - (;f j_(')) < g!%l’

where f;; is the i-th row-vector of matrix H = P~'. Replacing in this expression by (3.6),
we get:

. n . g— 1

0<h; > \Npi <=——

As P = H~1 it holds that h; -p; =1 and h; -p; = 0 if i £ 1. Consequently, the last formula

can be rewritten as follows:

foralli=1,...,n. If multiplied by ﬂ; - p;, this inequality gives:

1. If Be -9} > 0: A\if3 - pi > 0
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2. If G5 < 0: N7 = LG
According to the definitions of the symbol (ﬂ_;;. pi)T = max(—ﬁ_;; -, 0), the previous inequal-

ities can in every case be rewritten as follows: )\i@ Spp > —%(ﬂ; P = —)\Zﬂ; P <

gTTl(ﬁ_;; ;). If added for i =1,...,n, this inequality gives:

DRIEE ) SN (3.7)

i=1 i=1

For each ] € J" the system of inequalities B; = b holds. The k-th row of this system can
be written as follows: ﬁ_;; 5 < bi. We can replace ; in this inequality, using formula (3.6)
n

as follows: Bi - (o + 3. Nipy) < bk = Br - jo < bk — Br - (3 i)
=1 =1

= B o < bk — > NilBr - i)

i=1

— — n —
If we combine this inequality with (3.7), we conclude that By, - jo < by + gle S (Br-pi)”.
i=1
Thus, for each tile with origin j_(;, which has at least one point in the initial iteration space,

it holds that B]T) < b_;, where the vector U is constructed so as its k-th element is given by
n —
the form: bj, = by + gle > (Bk-pi)”. -

i=1

If we work with the tile space J° and take into account that ]?) = Pjtq, we equivalently get

the system of inequalities:
BPjS < (3.8)

If it is given that matrix B consists of only integer elements, % , can be determined by the

expression:

et (S i L &z

Geometrical interpretation: The term added to each element of b expresses a parallel shift
of the corresponding bound of the initial space. In Figure 3.3, we present an example of our
method. Each row 51 of matrix B expresses a vector vertical to the corresponding bound of the
iteration space with its direction outwards. The equation of this boundary surface is ﬁ_; ST =0b;.
A parallel shift of this surface by a vector zg is expressed by the equation B—; (F—xp) =b; &
B; T =b; +B_;- -20. As shown in Figure 3.3, we shift a boundary surface by vector —p;., iff the tile
edge-vector p; forms an angle greater than 90° with vector ﬁ_; (as the angles between the vectors

ﬂ_i and pi, ﬂ_i and p3, ﬂ_;;, and pi, ﬂ_:; and p3, 6_;1 and pi of Figure 3.3), or, equivalently, iffp?-ﬂ_;- < 0.
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Figure 3.3: Expanding iteration space bounds to include all tile origins.

The dark grey area corresponds to the initial iteration space area. The light grey area indicates
the expansion of the iteration space, in order to include all tile origins. It is shown that an
iteration space boundary is shifted, iff there is an inverse tiling vector p,, which traverses this
boundary outside — inside.

This fact can be expressed as follows: if the dot product of p, (one of the columns of the matrix
P) and 5@ (a row of B) is negative, then this dot product is subtracted from the constant b;.
Equivalently, in formula (3.5) the term (3; - )~ is added to the constant b; for all vectors py.
The multiplying factor % expresses the fact that a tile is a semiopen hyperparallelepiped and
thus we need not contain in the tile space the tiles which just touch the initial iteration space.

Note, however, it was proven that the expanded space includes all origins of tiles in JS.
It was not proven that it contains only origins of tiles in J°. In other words, this expansion
of bounds may include some redundant tiles, whose origins belong to the extended space, but
their internal points remain outside the original iteration space. These tiles will be accessed, but

their internal points will not be swept, as it will be shown next, thus imposing little computation



52 Automatic parallel code generation for tiled nested loops

Figure 3.4: Expanding iteration space bounds to include all tile origins.

The grey dots correspond to iteration inside J™, while the white dots correspond to iterations
outside J". This figure indicates that the expansion of the iteration space should be less than
the dot product of vectors EL and p;., so as not to include tiled that just touch the initial iteration
space boundaries, with no integer points inside J™. The dashed grey lines corresponds to the
expansion of bounds, according to the dot product of vectors 6_; and p;.. The solid grey lines
correspond to the final expansion, so as not to include a lot of redundant tiles.

overhead in the execution of the sequential tiled code.

Example 3.2: We will now enumerate the tiles generated by the tiling transformation
described in Example 3.1, using the method described just above. Following our approach,
we should construct the system of inequalities in (3.8) making use of the expression in (3.9).

. T
Expression (3.9) in our case gives b’ = ( 39 29 9 9 ) and thus, the system in (3.8) becomes:

6 4 39
2 8 3t |2
—6 —4 s ) | 9
-2 -8 9

The expansion of bounds for this example is shown in Figure 3.5. An application of the Fourier-
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Motzkin elimination method can convert this system to its equivalent:

1 0

-1 0 4
3 2 37 |
1 4 g ) | 14

-3 -2 4

-1 -4

Note that the implementation used for the Fourier-Motzkin elimination method can take into
account that index variables can only be integer, and further simplify the final expressions,
applying the floor or ceiling functions where appropriate. Consequently, a loop that enumerates

the tiles in our case has the form:

for (jY =—4; j¥ <8; ji++)
) —4-357 1 r—4—j7 . . 19-357 | | 14—j7 .
for (j5 =max([—521], [=51)5 J5 <min(|[=5"], [=%]);5 g5+ {
Execute tile (j7,75)

}

Note that tiles (8, —3) and (—4,4) are redundant (Figure 3.5).

3.2.2 Scanning the points within a tile

A conventional approach

In order to traverse the internal points of every tile, one can use the n innermost loop indices
of the system of inequalities produced when applying the Fourier-Motzkin elimination method
to the system (3.1). However, it is more efficient to separately apply the Fourier-Motzkin

elimination method to the systems:

Bj<b (3.10)

Recall from formula (2.1) that this systems indicates that iteration 7 belongs to the itera-

tion space.
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Figure 3.5: Example 3.2: Expanding iteration space bounds to include all tile origins.

The dark grey area corresponds to the iteration space area. The light grey area indicates the
expansion of the iteration space, in order to include all tile origins, according to formulas (3.4),
(3.5). Unfortunately, the expanded area contains also two tile origins, which do not correspond
to a tile in J°. Fortunately, they may be located only in near the edges of the expanded iteration
space. Thus, their number is negligible in comparison to the number of tiles of J.

gH

)(f—JT))S(

—

(g—1)1

0

(3.11)

Recall from formulas (2.8), (2.9) that this system indicates that iteration j belongs to tile

-

with origin iteration jo = H 155,

This modification is used in our implementation for automatically producing tiled code. As

deduced during our experimentation, it results to reducing both compile and run time of the

final code.

Compile time is reduced because there is no more need for applying the ad-Hoc and ex-

act simplification methods to the whole system produced by (3.1), but only to its subsystem

corresponding to the n outer loop indices.
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Run time is reduced because the combination of inequalities produced by (3.10) and (3.11)
are less than inequalities produced by (3.1). This is partly due to the fact that the exact
simplification method may not be able to detect the redundancy of an inequality in Z" if it is
not redundant in R™. On the other hand, inequalities originating from different systems (3.10)
and (3.11) are rarely redundant in respect to each other. Thus, it is almost improbable to have
an extra inequality in the final system due to not applying the simplification methods to the
combination of systems (3.10), (3.11).

In addition, when this modification is used, it is possible to check even less inequalities for
tiles that are not located near a boundary of the iteration space, at run time. If a tile crosses the
iteration space boundaries, then all inequalities produced by (3.10), (3.11) should be checked
during the scan of the interior of the tile. Otherwise, if a tile does not cross any iteration
boundary, only inequalities derived from (3.11) may be checked at run time. This simplification
presupposes the use of a method for distinguishing tiles into internal and boundary. As internal

we may characterize a tile with all its vertices in J".

Lemma 3.2 If all 2" vertices of a tile (€ = jo + > a:igTTlp'; forz; € {0,1}, i =1,...,n) belong
i=1

to the convex iteration space J", then all iterations of this tile belong to J".

Proof: According to Lemma C.1, in order to prove this lemma, we may only prove that
every iteration inside a tile 7° may be calculated by an expression of the form (C.1).
In the proof of Lemma 3.1, we have written that every itemtion} can be expressed as the

sum of its tile origin ﬂ) and a linear combination of the column-vectors of the inverse tiling

matriz P:
J=do+ Y N (3.12)
i=1

where 0 < \; < g—gl for alli = 1,... ,n. Equation (8.12) can be equivalently rewritten as
follows

7 - Ai Ai - - -1

i= X [H [(1 - g_gl> (1— )+ g_glxz} (]0 +3 2 ; piﬂ (3.13)

vz, € {0,1} - i=1
1=1.n

since

1. The total multiplying factor of j_(; equals to 1.

2 e, € {0,1) ; [(1-34) @ =2+ ] =

1=1.n
) 11 [(1-29) (1 —z) + 28] +
Vr; € {0,1} ;=5 g-1 ' g-1™
i=1.n-—1

Tn =0
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b Va; € {0,1} 7:1 [(1_ 9-1

t1=1.n—1
T, =1
n—1 r .
i i A
Z V‘TZG{O 1} .1:‘[1 _(1_51—(]1) (1_'ri)+g_g1$i_ (1—9%) +
t=1.n—1
n—1 r Aig Aig q B
2 Va; € {0,1} ,Ll;ll _(1 N g—i) (1 =)+ g-1Ti| g=1 =
i=1.n—1
el Aig Aig |
2 e e 0.1y L _(1 - gﬁ) (1 =) + 245
1=1.n—1
Eliminating this way the rest of the variable x;, i =1,...,n — 1, we conclude that

) ﬁ Kl - gAigl> (I—a) + g/\iglxi] =1 (3.14)
vz, € {0,1} !
1=1.n

. The total multiplying factor of p;, (L =1,...,n) equals to \;.

. Ai Ai -1 _
> s € (0,1} AL [(1 — g_ﬁ) (1—z)+ 9@} =t =

g—1 g
1 =1.n
. _ g o Aig .. g=1
b vr; € {0,1} il;[1 [(1 9*1> (1—=i)+ 9*1%} T
1=1.n,0#1
T, = 0
n
_ g o Aig . g—1 _
> Vr; € {0,1} z’l;[1 [(1 9—1) (=) + 9—1%} g =
t=1.n,i#1
T = 1
Ai i 9 9— (3£4)
0 + Z V.Z'l c {07 1} Hi:l..n,i;ﬁl |:(1 - g—%) (1 - xi) + g—qlxi:| ﬁqT - >\l
i=1.n,i#1

From (8.13), (3.14), we conclude that iteration 7 can be expressed in respect to vertices
¢ by a formula of the type (C.1). Thus, if all vertices ¢ belong to J", then iteration j of this
tile also belongs to J"

Example 3.3: In order to scan the tiles enumerated by the code produced in Example 3.1, we

may use the 14 remaining inequalities of the system (3.2). Otherwise, we may use a combination
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of systems
1 0 39
1 ' 29
0 <
-1 0 J2 0
0 -1 0

4 -2 19
-1 3 11— 7 19
J.1 3.01 <
-4 2 J2 — Jo2
1 -3 0

corresponding to formula (3.11). The former system of inequalities has already the required
form and need not be converted through a Fourier-Motzkin elimination. An application of the

Fourier-Motzkin elimination method to the latter system of inequalities results to the equivalent

system:
1 0
—1 0 0
-1 3 ( J1— Jo1 ) < 19
-2 1 J2 — Jo2 0
2 —1 9
1 -3 0

Note that this way only 4 + 6 = 10 inequalities should be checked for each iteration, instead
of 14, as deduced from formula (3.1) in Example 3.1. In sequel, one can fill in the missing part
of the code produced in Example 3.1, according to the systems of inequalities described just

above.

for(jy=-3; jig <7; jf++)
48 428 , ) S S .
for (j5=max ([ 44]1 1, | 423]1 s g5 Smln(LMleJ , ng 23j1 1 g5+
/* Execute tile (j,j5) */
j01=6jig+4j25; /* Calculate j_(; = Pj5 x/
J02=2j7+85 ;
for (j1=max (0, jo1); 71 <min(39, jp1+9); 'j1-|‘-+)
for (jo=max (0, joa-9+2(j1 — jo1), Joo+[25"]);
19+(j1—7 . . . .
MJ s Jo2+2(j1 — jo1) )5 Ja++){

J2 <min(29, jo2+|
/* Execute iteration (j1,j2) */
A[j17j2]=A[jl - 17j2 - 2]+A[jl - 37j2 - 1]:
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A reduction of the run time can be achieved by distinguishing the tiles into internal and
boundary, according to Lemma 3.2. Such a discrimination implies a check whether all vertices
of the tile belong to J". This check is necessary to be conducted once for all 2" vertices of each
tile, while without this discrimination, the iteration space boundaries are checked once for each

iteration. Thus, the above code segment can be rewritten as follows;

for (jy=-3; ji <7; ji++)

for (j§=max ([~2], [ZH5H0]y; 4§ <min((MPE ], 080 |y sy
/* Execute tile (j7,j5) */
ﬂn=6jf+4j§; /* Calculate‘ﬂ;:apjé */
J02=277 +855 ;
/* Check whether tile (j{,j5) crosses the iteration space */
/* boundaries */
check=TILE_IN;
for(z1=0; z1 <1; z1++)

for(ze=0; my <1; wa++){

n
/* Calculate vertex &= jo+ > ap; for all x; € {0,1} */
i=1
c1=Jo1+6x1+472;
C2=Jo2+2x1+872;
/* Check whether ¢ &€ J" x/
if(c1<0 1] ¢1>39 |1 <0 || CQ>29){
check=TILE_CROSS;
break;

}

if (check==TILE_CR0OSS) break;
}
if (check==TILE CROSS) {
/* Execute tile (jf,jg) in case it may cross */
/* the iteration space boundaries */
for (ji=max(0, jo1); j1 <min(39, jo1+9); ji++)
for (jo=max (0, jo2-9+2(j1 — jo1), joo+[L5]);
J2 <min(29, j02+L19+(j3ﬂJ s Jo2+2(j1 — Jo1)) 5 Ja++d{
/* Execute iteration (ji,j2) */

Alj1, j2]=Alj1 — 1, jo — 2]+A[j1 — 3, jo — 1];

}
}
else {
/* Execute tile (j7,j5) in case it does not cross */
/* the iteration space boundaries */
for (ji=jor; J1 < jo1#9; Jji++) o
for (jo=max (jo2-9+2(j1 — jo1)» Jo2+[25 D)5
jo <min (oot ZEIATIOD | o042 (G — Goi))s jot+) |
/* Execute iteration (ji,7j2) */
Alj1, j2]=A[j1 — 1,52 — 2]+A[j1 — 3, j2 — 1];

}



3.2 Generation of Serial Tiled Code 59

Note that the generation of the above code segment is completely automated, when the
initial iteration space and the tiling transformation are given. In addition, the loop bounds
generated in this example for the n innermost loop indices can be also combined with the loop

bounds generated for the n outermost loop indices in Example 3.2.

Reducing the run time overhead of tiling

In order to achieve a reduced run time complexity of the code generated automatically, as seen
in Example 3.3, one should reduce the complexity of the loop bounds, which are checked for all
tiles. That is, one should reduce the complexity of inequalities generated from formula (3.11). It
is achieved by applying a linear transformation to the initial iteration space, so as to transform

non-rectangular tiles into rectangular ones.

(a) a conventional approach (b) reducing the run-time overhead

Figure 3.6: Scanning the iterations of a tile.

(a) lterations of a tile are executed according to their lexicographic order, parallely to the axes.
(b) Iterations are scanned in such an order that traces to be parallel to the tile edges.

The method is based on the use of a non-unimodular transformation. The final goal is to
traverse the TS and then slide the points of T'1.S properly, so as to scan all points of J". In
order to achieve this, the T'IS is transformed to a rectangular space, called the transformed tile
iteration space (T'T'[S). The TTIS is traversed with an n-dimensional nested loop and then
the indices of the loop are transformed, so as to return to the proper points of the T'1S.

In other words, there is needed a transformation pair (P, H'): TTIS P rrs and 1S
TTIS (Fig. 3.7). Intuitively, P’ should be parallel to the tile sides, that is, the column vectors

of P’ should be parallel to the column vectors of P. This is equivalent to the row vectors
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of H' being parallel to the row vectors of H. In addition to this, we demand the lattice of
H' to be an integer space for integer loop indices to be able to traverse it. Formally, an n-
dimensional transformation H' : H' = V H must be found, where V is an n x n diagonal matrix
and L(H') C Z™. The following lemma proves that the second requirement is satisfied if and

only if H' is integral.

Transformed Tile Iteration

Space (TTIS)
HJ
J2
Tile Iteration Space 00000000
(TIS) O0OO0O@eO0OO0OO0OO®
LA 00000000
J2 0000000
- , 00000000
--"% 9 H b 0O®o0000®O0O0
a‘ /
-8 000,
——Pp Db 00O0Oe0O0O0Oe
,oooo,’
b ®@0000®@000
S oeoe e
, b 00e0000eO0
I....'
’ Ppooooeoooo
o2 00 0 0/
/ / —— DbO®0O0OO0OO@®@O0O
/e 0000
/ , p’ boooeooo0Oe®
moee0o0o0,
’ - b ®@0000®000
70 0 @~
- _ bo0OO0Oeo0O0O0OO0eO0
—r » Ppooooeoooo
)1 boeooooeo0oO
boooeooooe
D ®@0000®000
b 0O0O®e0000O0O0

Figure 3.7: Traverse the T'IS with a non-unimodular transformation.

In order to traverse the tile iteration space parallely to the tile edges, as indicated in Figure 3.6(b),
the non-rectangular tile iteration space should be transformed into a rectangular one, using a non-
unimodular transformation matrix H’. Since H’ is not unimodular, the transformed space may
include integer points with no integer coefficient in the initial space. They are depicted by white
dots.

Lemma 3.3 ]'7 = Aje Z"Vj e Z" iff A is integral.
Proof: If A is integral, it is clear that j_; € Z"j e Z".
Suppose that j_; € Z"™j € Z™. We shall prove that A is integral:
It holds ﬁ e Z" for ; = Uy, where uy, is the k-th unitary vector,

U = (Uk1y -y Ukn), Ukk = Liug; = 0,1 #£ k

Thus,

n n n T
by ~ T n
j = Aty = g A1iUki, E A2iUkis - - -5 E iUk = la1k, G2k, ... ank]” € Z
i=1 i=1 i=1

This holds for all iy, k = 1...n, therefore all elements of A are integer numbers. -



3.2 Generation of Serial Tiled Code 61

Let us construct V in the following way: Every diagonal element vy is the smallest integer
such that vkkh_l; is integral, where h_;; is the k-th row of matrix H. Thus, both requirements for
H' are satisfied. It is obvious that H’ is a non-unimodular transformation. This means that
the transformed tile iteration space contains holes. In Figure 3.7, the holes in the TTIS are
depicted with white dots, while the actual points are depicted with black ones. So, in order to
traverse the T'1S, we have to scan all actual points of the TT'1.S and then transform them back
using matrix P’. We can apply any of the methods presented in [Ram92], [Ram95], [Xue94],
[Li93], [FLV95] to traverse the TT1S. However, we will avoid the application of Fourier-Motzkin
elimination method by taking advantage of the tile shape regularity.

We use an n-dimensional nested loop with iterations indexed by j7 = (34575 -+, Jh), in order
to traverse the actual points of the TTIS. Replacing j = P’f’ in formula (2.7), the boundaries
of TTIS are given by the system of inequalities: 0 < HP/j_; <ls0< V*1j_; <l&

0<jp,<wv—1, forallk=1,...,n (3.15)

The bounds of the indices j; are determined by formulas (3.15), without applying the Fourier-
Motzkin elimination method to the system of inequalities (3.11).

However, the increment step c;, of an index j; is not necessarily 1. In addition to this, if
index j;, is incremented by ¢y, indices ji , ..., j, should not be initialized at 0. Suppose that
for a certain index vector 37, it holds P’ j_; € Z". The first question is how much to increment
the innermost index j/, so that the next swept point isTalso integral. Formally, we search the
minimum ¢, € Z such that P’ ( oJh o bt ) € Z". After determining ¢,, the next
step is to calculate the increment step of index j/,_; so that the next swept point is also integral.
In this case, it is possible that index j/, should also be incremented by an offset Ap(n-1) : 0 <
Up(n—1) < Cn. In the general case of index Jr. we need to determine Chs A(k41)ks - - - » Ank SUCh
that: P’ ( Ji o JptCk e T Akie oo Jnt Onk )T € Z". Every index j; has k —1
different incremental offsets ax;, depending on each of the increment steps ¢; of the & — 1 outer
indices ji. These offsets are ay;, ... ; a(k—1)- The following lemma proves that increment steps
¢, and offsets ag;, (k=1...nandl =1...k—1), are directly obtained from the hermite normal

form of matrix H', denoted H'.

Lemma 3.4 If H' is the column HNF of H' and j = (41575, -+, g1, is the index vector used
to traverse the actual points of L(H'), then the increment step (stride) for index j; is ¢, = I

and the incremental offsets are ay = l?’kl, (k=1...nandl=1...k—1).

Proof: It holds L(H') = L(H'). Thus, 0 € L(H') and the columns of H' belong to L(H').
Suppose T € Z”/{ﬁ} with the following properties: x; = 0 for i < k and 0 < z; < B ik for
k <1i<n. It suffices to prove that T = Ry
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Suppose that & € L(H'), which means that 3] € Z™ : H'j = . H' is a lower triangular
non-negative matriz and thus it holds: 1 = i?’lljl =0=j; =0. Similarly, j; =0 fori < k.
In the sequel, it holds: x) = ﬁ’kkjk. According to the above, it holds: 0 < xp = f?’kkjk <
Wik = 0 < jx < 1. In addition, 0 < 21 = W iywde + B ey (s 1) Jt1 < B (erayp- Since
f?(kJrl)(kJrl) > g’(kJrl)k = jrr1 = 0. Similarly, j; = 0 for i > k+ 1. Consequently, since
Z#0, & is the k — th column of H. -

'\ﬁ:;"ll:l

Figure 3.8: Steps and initial offsets in TT1S derived from matrix H

According to the above analysis, the point that will be traversed using the next instantiation
of indices is calculated from the current instantiation, since steps and incremental offsets are
added to the current indices. Special care is taken so that every time the index vector 37 =
(415 .-+, Jbh) is to be modified, the new index vector 47 is calculated as a sum of current j/ and
a multiple of a column-vector of . Thus, assuming that the current instantiation j7 e L(H),

we ensure that the next point to be traversed remains in L(H').

Theorem 3.1 The following n-dimensional nested loop traverses all points j_; eTTIS

for(ji=0, ey ];{L:O; ~]i <wi1-1; j£+=l'11111, RERE j;f":h/nl)
fOI‘(j;L+ == [7:/j2-| * hlng, e ,jé+ = |7:,]2—| * h/22; ]é S V22 — 1;
h22 h22 ~ ~
-/ — K -/ K
j2+_h22)"'7jn+_hn2)

for(j;z{— - [%1 * h/nn; ];L < Upp — 1; jrlz"' = h/nn){
Loop body

}

We now need to adjust the above loop, which sweeps all points in TT'1S, in order to traverse
the internal points of any tile in J°. If j_7 € TTIS is the point that is derived from the indices
of the former loop and j_é € J® is the tile, whose internal points ]’e J" we want to traverse, it
will hold: j = jo + P'j7 = PjS + P'j’, where jo = Pj% € TOS is the tile origin, and P'j’ € TIS
is the corresponding to 37 point in TIS. Since P = VP, the last equality can be equivalently
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rewritten as follows:

-

j=P(VjS+j) (3.16)

Special attention also needs to be paid so that the points traversed do not overcome the original
space boundaries. As we have mentioned before, a point ; € J™ satisfies the following set of

inequalities: Bj < b. Replacing j by the above equation (3.16), we have:
BP' (ViS5 +j)<b (3.17)

By applying the Fourier-Motzkin elimination method to this set of inequalities, we obtain proper
expressions for 377, so that we do not cross the original space boundaries. As deduced for systems

(3.10), (3.11), system (3.17) should be used in combination with inequalities (3.15).

Example 3.4: Let us consider the same algorithm as in the previous examples. We will now

sweep the internal points of tiles with the use of the method described just above. We need the
2 10 0

-1 0

—1
following matrices: H' = [ ; ] and V = . The

Ul= oYW

(SRS

. Accordingly, P’ =
o 1 0 2 -1 1 1

Hermite Normal Form of matrix H' is H' = = and thus, as
2 5 —1 3 1 2

shown in Figure 3.8, ¢; = 1?11 =1,c = f?gg =b5, a9 = 1?21 = 2. Consequently, the code that

traverses the indices inside every internal tile, according to Theorem 3.1, is:
/* Calculate j_’(; = Vj_é */
j(/n:loji:;
J02=2073 ;
for (j1=0,75=0; 75 <9; ji+=1j5+=2)
for (jh+=[=22]5; jh<19; jj+="5) {
/* Calculate f: P’(Vjs +j_7) x/
71=5 (o1 + J1)*5 (oo + 72) 5
J2=5(Jor + 71)+5 (i + 72) 5
/* Execute iteration (ji,j2) */
A[jlajﬂ:A[jl - ]-,j2 - 2]+A[]1 — 3,j2 — 1],
}

In order to exactly scan the internal of boundary tiles, we construct matrix

2139
mep=| 5 0%

_3 _11 9

5 5

1 2

-5 5|0
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The application of Fourier-Motzkin elimination method on this matrix gives:

1 0| 78
-1 0| 29
3 11195
121|145
-3 -1 0
-1 -2 0

Consequently, the code that traverses the indices inside tiles, which cut the iteration space

bounds, is:

—

/* Calculate j| = Vjtq */
J01=1057 5
j62=20j§?
| =max(0,—29 — j{1);
uy =min(9 /* vii-1 */, T8 — jo);
for (jj =1, 5 =0%2; §, <ul; ji+=1,j4+=2) {
 =max (0, —3(jhy + 1) — dbos [T — 1oy |
uy =min(19 /* wvoo-1 */, 195 — 3(jo; + 41) — Joos L%MJ —Jo2) s
for (jh+ =221 455 j4 <'bos jh+=5) {
/* Calculate ;: P’(VjS‘F,ﬁ) */
1=2 Gy + 31)* 3 (oo + 45) 5
J1=5 (o + 71)+5 (o2 + J2) 5
/* Execute iteration (ji,j2) */
Alj1, jol=Aj1 — 1, jo — 2]+A[j1 — 3,2 — 13

}
}

Using the tile space boundaries calculated in Example 3.2, and combining the code segments
produced just above for internal tiles and for tiles crossing the iteration space boundaries, we

get the final code segment:

for (j7 = —4; j7 <8; ji++)
. —4-3j7 7 r—4—j7 . .1 19357 14—57 )
for (j5 =max([—571], [ 1); j8 <min(|=5"%), 552 ])5 45+ |
/* Execute tile (j7,j5) */
/* Calculate jj=Vj% %/
j61=1()jig; /* This line could be placed outside loop 725 */
i1 =9045
Jo2=24Y]2 5

/* Check whether tile (j7,j5) crosses the iteration space */
/* boundaries */
check=TILE_IN;
for(z1=0; x1 <1; x1++){
c1=jo1+921;
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if(1<-29 || ¢1>78) { check=TILE CROSS; break; }
for(z9=0; w9 <1; wot++){
2= +1972;
/* Check whether ce& J" */
if (cp<max(-3cy, [=2]) |1 c>min(195-3cy, [M5-4])){
check=TILE_CROSS; break;
}

if (check==TILE_CROSS) break;

if (check==TILE_CROSS) {
/* Execute tile (j7,j5) in case it may cross */
/* the iteration space boundaries */
| =max(0,—29 — j(1);
wy =min(9 /* vi-1 */, 78 — j{;);
for (i =K.y =12 /i S5 fi+=Lip+=2) {
b =max (0, ~3(j5, + 1) — sbos [~25] — iy
u’2 =min(19 /* wv9o-1 */, 195 — 3(]61 +]i) - j(l)g, L 2
for Gyt = 9521 %55 j </ bos Jo+ =5) |
/* Calculate j = P’(Vj_:q +47) */
31=5 Gon + 71)+5 (o2 + )
J1=5(jor + J1)+5 (o2 + J2) 5
/* Execute iteration (ji,j2) */
Alj1, jol=Al — 1, j2 — 2]+A[j1 — 3,72 — 1];

145— (41 +41)

¥
¥
¥
else {
for (j1=0,j=0;5 j1 <9 jit=17jo+=2)
for (it =[21%5; j5<19; ji+ =5
/* Calculate j = P’(Vj_é —l—jﬂ */
=2 (o + 31)+5 (oo + 75)
J1=5 (Jor +J1)+= (o2 + 75)5
/* Execute iteration (ji,j2) */
A[j1, jo]=A[jr — 1, j2 — 2+A[j1 — 3,2 — 1];
¥
¥

IEFIF
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3.2.3 Comparison — Experimental Results

Both our method (in the sequel denoted as RI - Reduced Inequalities) and the one described
in [AI91] by Ancourt and Irigoin (denoted as AI), have been implemented as a software tool
which automatically generates tiled C code using any tiling transformation P. In this section,
we compare Al and RI methods both in terms of compilation time and generated code efficiency.
We generated several random 2— D and 3— D problems and measured the following: compilation
time, row operations performed by Fourier-Motzkin elimination and run time of the generated
code. In the sequel, we applied both AT and RI methods to three real applications: SOR, Jacobi
and ADI integration. We also applied the inequalities of AI method to the Omega calculator
[KMP195] and generated code for all problems. We then measured the compilation time and
run time obtained by Omega (the results are denoted as AI-Omega) and compared them with
the ones obtained by AI (using our tool) and RI. Table 3.1 shows the iteration spaces used as
examples in 2 — D and 3 — D problems. We applied several tiling transformations, in which the
non-zero elements of the tiling matrices were randomly generated. In 2 — D spaces we applied
three different tiling transformations (Py, P», P3) varying from the diagonal matrix P; to more
complex ones. In 3 — D spaces we applied seven different tiling transformations (P4, ..., Pi),
again here starting from the diagonal Py and adding non-zero elements (P contains no zero
element). We performed our experiments on a PIIT @ 800MHz processor with 128 MB of RAM.
The operating system is Linux with kernel 2.4.18. The generated tiled code was compiled using
gee v.2.95.4 with the -O3 optimization flag. We also experimented with lower optimization
levels, where the execution times were slower, but the relative results for all methods remained

the same.

Table 3.1: Example iteration spaces

J1 J2 Js

lower upper lower upper lower upper

bound | bound bound bound bound bound # of iterations
Spacel —1999 4999 —1999 4999 - - 48986001
Space2 —1999 4999 —1999 4999 + 24, - - 69983001
Space3 —4999 4999 —4999 + 331 | 4999 + 24 - - 99980001
Space4 0 399 0 399 0 399 64000000
Spaceb 0 399 0 399 + 41 0 399 95920000
Space6 0 399 —i1 399 + iy 0 399 127840000
Space7 —-99 149 —99 — i1 149 + i1 —-99 149 + 242 22904099
Space8 0 399 —i1 399 + 4y i1 79 4 2ia 117635018
Space9 -99 149 —99 — iy 149 + i1 —99 — i1 | 149+ 41 + 2o 31129399
Spacel0 0 59 —1i1 59 + i1 —i1 — 3t2 | 59 + i1 + 2ia 1994462

Row Operations - Compilation Time

Tables 3.2-3.4 summarize the results (row operations and compilation time) from the compila-

tions of all iteration spaces tiled with all candidate tiling matrices. We present here the number
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Table 3.2: Fourier-Motzkin row operations and compilation time for 2D algorithms

[ AT | RI || AT-Omega | AT | RI |

|  Row Operations il Compilation Time (ms) ‘
Spacel | 30 10 16.29 0.26 0.26
P; | Space2 | 30 10 19.53 0.27 0.26
Space3 | 34 10 20.82 0.29 0.26
Spacel | 37 10 22.56 0.28 0.27
P> | Space2 | 33 10 21.56 0.28 0.27
Space3 | 34 10 22.78 0.29 0.26
Spacel | 56 12 33.36 0.36 0.30
Ps | Space2 | 55 12 39.40 0.37 0.30
Space3d | 53 12 40.12 0.36 0.30

| Avg. Row Operations [| Avg. Compilation Time (ms) |
P, 31 10 18.88 0.27 0.26
Py 35 10 22.30 0.28 0.27
Ps 55 12 37.63 0.36 0.3

of row operations and compilation times of each matrix for each iteration space and the average

values of each matrix for all iteration spaces.

Run Time

In order to evaluate the run time overhead due to tiling, we executed all tiled codes of the previous
problems and measured their run time. We also executed the original untiled serial code for
each problem. We define the tiling overhead factor (TOF) as the fraction of the run time of the

. . . . . __ Run time of Sequential Tiled Code
sequential tiled code to the run time of the untiled code: TOF = Run fime of Untiled Code

Note that, the loop body in each case is a simple array assignment statement and, thus, the run
time measured is dominated by the time to compute the loop bounds. Since the array size was
small (20 x 20) and the tile sizes were not chosen to be optimal for cache locality, the sequential
tiled code does not present any improvement due to the exploitation of the memory hierarchy.
Thus, TOF indicates the overhead imposed by the evaluation of the new loop bounds, due to
tiling. If TOF is too large, it will aggravate the speedup obtained when we parallelize nested
for-loops using tiling. Tables 3.5-3.6 summarize the tiling overhead factors. Again here we
present the TOFs of all tiling matrices applied to each iteration space and the average TOFs
of all matrices P across all iteration spaces. Figure 3.9 shows the TOF of 3 — D problems as a

function of the number of non-zero elements in tiling matrix P.

Real Applications

In our last set of experiments, we applied AT and RI methods to tile three real applications: SOR,
Jacobi, and ADI integration. For the first two problems, there is a skewed and an unskewed
version, and for each version there are four (communication and scheduling) optimal matrices as

described in [HS02] and [Xue97al]. Table 3.7 summarizes the row operations, compilation times
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Table 3.3: Fourier-Motzkin row operations and compilation time for 3D algorithms.
In some cases the Fourier-Motzkin elimination method could not be completed in a reasonable
time, or was interrupted due to lack of memory or an overflow exception. In these cases, we have
denoted a — in the respective cells of the table.

L Row Operations u

[

Compilation Time (ms) ‘

{ Al { RI HAI-Omega { Al T RI ‘
Space4 70 22 27 0.41 0.43
Spaceb 70 22 30.7 0.42 0.43
Space6 74 22 33.39 0.44 0.43
Py Space7 80 22 42.5 0.49 0.44
Space8 117 22 84.14 0.62 0.44
Space9 87 20 55.8 0.53 0.43
Spacel0 116 22 89.54 0.63 0.44
Space4 82 22 36.3 0.45 0.44
Spaceb 86 22 45.58 0.48 0.43
Space6 96 22 51 0.53 0.43
Ps Space7 95 22 51.52 0.55 0.44
Space8 150 22 158.12 0.79 0.45
Space9 110 20 55.56 0.62 0.43
Spacel0 118 22 70.35 0.65 0.45
Space4 132 28 106 0.64 0.48
Spaceb 159 34 167.63 0.77 0.51
Space6 220 42 371.34 1.1 0.54
Ps Space7 199 38 213.76 1.03 0.54
Space8 470 42 397.13 3.91 0.54
Space9 316 38 284.81 1.91 0.54
Spacel0 360 42 382.33 2.32 0.55
Space4 264 28 235.55 1.33 0.49
Spaceb 578 34 367.78 6.0 0.52
Space6 508 42 1,188.72 4.24 0.55
Pr Space7 1411 38 911.38 40.78 0.54
Space8 1522 42 2,099.32 51.31 0.56
Space9 379 38 370.47 2.61 0.55
SpacelO 419 42 527.3 3.08 0.56
Space4 4,254 28 1,558.04 460.04 0.51
Spaceb 14,012 34 2,891.19 7,607.2 0.52
Space6 10,049 38 4,019.51 3,022.46 0.54
Ps Space7 1,752 36 1,846.78 73.16 0.54
Space8 6,031 40 3,201.75 1,040.44 0.55
Space9 637 36 3,889.58 7.27 0.54
SpacelO 936 40 15.95 0.55
Space4 6,933 46 1,984.67 1,280.34 0.56
Spaceb 10, 569 42 2,775.25 3,234.86 0.56
Space6 5,655 40 3,662.66 855.78 0.55
Py Space7 751 40 5,132.84 9.77 0.55
Space8 1,907 36 1,943.71 83.53 0.54
Space9 259 22 2,308.23 1.37 0.51
Spacel0 295 22 2,640.29 1.65 0.49
Space4 6,477 46 1,629.59 1,034.07 0.58
Spaceb 27,763 44 2,612.24 45,342.36 0.56
Space6 12,533 40 2,484.32 5,351.28 0.55
Pio | SpaceT 95,712 40 2,428.64 638,417.48 0.56
Space8 83,025 40 1,014.64 450, 599.44 0.56
Space9 71,119 40 3,215.22 328,971.3 0.57
Spacel0 | > 120,309 40 4,336.41 > 1,025,846.41 | 0.57
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Table 3.4: Average row operations and compilation time for 3D algorithms

Avg. Row Operations u Avg. Compilation Time (ms) ‘

AT | RI [ Al-Omega | AT | RI |
P, 88 22 51.87 0.51 0.43
Ps 105 22 67.2 0.58 0.44
Pg 265 38 276.14 1.67 0.53
Py 726 38 814.36 15.62 0.54
Psg 5382 36 2,901.14 1,746.64 0.53
Py 3767 35 2,921.1 781.04 0.53
Pio | 59563 41 2,531.58 356,508.91 | 0.56

Table 3.5: Tiling overhead factors (TOF) for 2 — D problems

TOF (2D) il Avg. TOF (2D) |

AI-Omega | AT | RI [[ AI-Omega | AI [ RI |
Spacel 2.59 0.96 | 1.24

P; | Space2 2.73 1.01 | 1.27 2.85 1.03 | 1.31
Space3 3.22 1.13 | 1.43
Spacel 6.27 4.55 | 1.61

P> | Space2 6.12 4.62 | 1.63 6.62 4.78 | 1.69
Space3 7.45 5.16 | 1.82
Spacel 8.00 6.10 | 3.58

Ps | Space2 7.75 6.21 | 3.63 8.23 6.41 | 3.75
Space3 8.95 6.92 | 4.04

and TOFs for each case. Figure 3.10 shows the TOFs obtained by each method, in each case.

Overall Evaluation Comments

As far as compilation time is concerned, RI method clearly outperforms AT method. This is due

to the fact that RI method feeds Fourier-Motzkin elimination with the system in (3.8), which

consists of 2n inequalities with n variables, while Al method feeds Fourier-Motzkin elimination

with the system in (3.1), which consists of 4n inequalities with 2n variables. Recall that Fourier-

Motzkin elimination is a doubly exponential algorithm and thus the reduction in its input size

TOF

16

Avg. TOF in 3D problems

14

T T T T
using Omega calculator —+—
using Al method ---<--

12

using RI method 4=~

10

5

6 7

# of non-zero elements in P

Figure 3.9: Average tiling overhead factors for 3 — D problems
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Table 3.6: Tiling overhead factors (TOF) for 3 — D problems.
In case the compilation time could not be calculated in Table 3.3, then, the run time can not be
calculated, either. These cases have been indicated by a — in the respective cells of this table.

TOF (3D) Il Avg. TOF (3D) |

Al-Omega | AI | RI [ AI-Omega [ AI | RI |
Space4 1.33 1.21 1.18
Spaceb 1.36 1.23 | 1.17
Space6 1.39 1.23 | 1.17

P, | Space7 2.19 1.21 | 1.11 1.99 1.26 | 1.17
Space8 2.45 1.16 | 1.19
Space9 2.44 1.28 | 1.10
SpacelO 2.75 1.48 | 1.30
Space4 5.39 3.57 | 1.97
Spaceb 5.57 3.59 | 1.98
Space6 5.72 3.63 | 1.91

P, | Space7 4.33 3.20 | 1.77 4.96 3.44 | 1.88
Space8 4.57 3.20 | 1.85
Space9 4.51 3.33 | 1.77
Spacel0 4.61 3.53 | 1.90
Space4 10.90 7.55 | 4.05
Spaceb 10.77 7.52 | 4.38
Space6 11.17 7.65 | 4.51

P, | Space7 8.33 6.67 | 4.13 9.55 7.16 | 4.62
Space8 8.44 6.68 | 4.01
Space9 8.52 6.89 | 4.61
Spacel0 8.75 7.18 | 6.67
Space4 15.50 9.86 | 4.65
Spaceb 16.09 10.05 | 5.14
Space6 16.20 10.10 | 5.29

Pr; | Space7 12.67 9.04 | 4.80 13.90 9.47 | 5.17
Space8 12.72 8.92 | 4.65
Space9 11.80 8.95 | 4.84
SpacelO 12.29 9.38 | 6.84
Space4 12.94 9.81 | 3.51
Spaceb 12.40 9.88 | 3.61
Space6 12.27 9.92 | 3.68

P, | Space7 9.87 8.39 | 3.29 11.24 9.14 | 3.60
Space8 10.08 8.36 | 3.16
Space9 9.87 8.60 | 3.48
SpacelO 8.98 | 4.46
Space4 12.68 9.63 | 6.10
Spaceb 12.52 9.61 | 6.05
Space6 12.68 9.75 | 6.09

P, | Space7 9.21 7.96 | 5.05 10.74 8.78 | 5.51
Space8 9.75 7.89 | 4.39
Space9 9.51 8.15 | 4.57
SpacelO 8.86 8.46 | 6.33
Space4 16.07 11.70 | 5.17
Spaceb 16.55 11.75 | 5.04
Space6 16.24 11.57 | 5.09

P, | Space7 12.30 10.48 | 5.11 13.62 11.07 | 5.62
Space8 11.20 10.14 | 3.83
Space9 11.26 10.77 | 5.67
SpacelO 11.72 - 9.44
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Table 3.7: Performance for real applications

Row Operations H Compilation Time (ms) H TOF J
Al { RI H AI-Omega { Al { RI H ATI-Omega { Al { RI ]
Py 99 22 53.03 0.50 0.42 1.47 1.20 | 1.05
SOR P, 107 22 50.27 0.53 0.42 1.50 1.21 | 1.01
Ps 118 22 49.01 0.57 0.42 1.75 1.63 | 1.05
P, 165 40 90.04 0.77 0.5 1.80 1.78 | 1.30
P 99 22 42.09 0.53 0.41 1.59 1.29 | 1.06
SOR P, 107 22 40.60 0.53 0.42 1.60 1.29 | 1.06
skewed || P3 118 22 57.9 0.57 0.42 1.90 1.73 | 1.12
Py 165 40 91.97 0.77 0.51 1.95 1.86 | 1.34
Py 645 28 346.99 5.3 0.46 2.08 1.91 | 1.57
Jacobi || P2 645 28 347.96 5.26 0.47 2.09 1.92 | 1.60
P3 800 28 362.5 8.86 0.47 2.06 1.90 | 1.56
Py || 3207 46 1,353.55 194.88 | 0.53 5.58 5.09 | 2.10
Py 645 28 251.885 4.93 0.48 1.99 1.88 | 1.44
Jacobi || P2 645 28 248.27 4.98 0.47 1.98 1.87 | 1.46
skewed || P3 800 28 229.34 8.19 0.48 2.02 1.89 | 1.45
P, 691 28 238.82 5.95 0.47 2.01 1.88 | 1.43
ADI [[ P [[ 180 | 28 [ 4742 0.85 [ 0.46 ] 146 [ 1.47 [ 1.07 |
3,5
3
2,5
w 2 m Omega
e 15 mAl
1 aRl
0,5
0
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Figure 3.10: Tiling overhead factors for real applications

imposed by our method causes significant reduction in the method’s execution steps, as clearly
seen by the number of row operations. Note also that the exact simplification method of Fourier-
Motzkin elimination was not applied in the presented experiments, since the gain in run time
by the application of the method was inadequate to justify the vast increase in compilation
times, especially in the case of AT method (3% average and 10% maximum gain in run time). In
particular, while RI compilation times remained in the order of milliseconds when using exact
simplification, AT compilation times increased dramatically (reached the order of an hour). This
means that we can practically apply exact simplification to RI, in order to further improve the
efficiency of the generated code.

Despite the reduction in compilation time imposed by RI, it seems that both AT and Al-
Omega perform well in almost all 2 — D and 3 — D problems (compilation times are less than
one second). However, in problems of larger dimensions, both AT and AI-Omega present several

problems. We executed a number of randomly generated 4 — D algorithms and observed that,
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at first, the compilation time of AI becomes impractical (several hours or even days). More
importantly, Al failed to generate code for almost half of the problems due to lack of memory.
Note that Fourier-Motzkin elimination is also doubly exponential in space, so in several 4 — D
problems even 1GB of virtual memory was not sufficient to cover the needs of the method. On
the other hand, AI-Omega also faced some problems with memory space (to a smaller extent
than AI) but here again, in almost half of the problems, the system rose an overflow exception.
Apparently, after a large number of row operations in 4— D algorithms, some coefficients exceeded
the system’s MAXINT. In all cases RI method succeeded in generating code, within some seconds

in the worst case.

Note, also, that, since we do not know all details about the implementation of Omega, we
cannot be sure why the AT-Omega implementation gives higher implementation times than our
implementation. However, as deduced by tiling matrices Ps, Pig, Omega is more stable and one

can more accurately predict the time needed for the generation of serial tiled code.

Asg far as run time is concerned, RI also exhibits a significant improvement in performance in
all problems. In particular, as shown in Figure 3.9, as the number of non-zero elements in matrix
P increases, the improvement of RI method becomes much more obvious. This means that RI
method performs very well in complex problems where the tiling matrices contain many non-
zero elements and the iteration spaces are non-rectangular. In addition, as shown in Figure 3.10,
RI’s performance is nearly optimal in simpler algorithms such as SOR, Jacobi and ADI, since
the TOF in these cases is very close to one. Thus, RI performs very well in easy problems and
sustains a remarkably good performance even when the tiling transformations and the shape of

the iteration spaces become increasingly complex.

The improvement in the quality of the generated code caused by RI, is due to the fact
that, although the code to enumerate the tiles is essentially similar in Al and RI, the code to
traverse the internal points of the tiles is completely different. Our tool makes a distinction
between boundary and internal tiles and generates different code to scan the internal points for
both AI and RI (as in Examples 3.3, 3.4). In the case of boundary tiles, RI method results
in fewer inequalities for the bounds of the tile space. Consequently, fewer bound calculations
are executed during run time. In the case of internal tiles, which are the vast majority in most
problems, the code of RI consists of a loop with constant bounds 0 < j/ <wv;—1fori=1,...,n
(see formula (3.15)), while the code of AT includes a loop whose bounds are derived from the

.. . . . . gH - = (9 — 1)T
application of Fourier-Motzkin elimination to the system = (7 —Jo) < .
—g 0

(see formula (3.11)). It is clear that the calculation of loop bounds in the first case is much
more efficient. Finally, note that the enumeration of some redundant tiles does not impose
any significant overhead, since the number of redundant tiles is negligible. The same holds for
the non-unimodular transformation used to access the internal points of the tiles. In this case,

the additional operations due to the transformation are simple integer multiplications, while
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operations on extra variables are integer additions and assignment statements, which are all
efficiently executed by modern processors and optimized by any back-end compiler like gcc.

Note, also, that, the run time overhead imposed by Omega, in comparison to our implemen-
tation for AT inequalities, is due to the fact that Omega is a general purpose code generation
tool, while our implementation is aimed at tiled nested loops. Thus, Omega cannot take into
account the discrimination of internal and boundary tiles, as in Examples 3.3, 3.4. It uses the
system of inequalities (3.1) for both enumerating the tiles and scanning their interior. Although
the optimization described in this section could not be incorporated into Omega, the respective
columns have been used in Tables 3.2-3.7 as a measure of efficiency of the code produced by our
tool.

Summarizing, the compilation time reduction is due to the method used to enumerate the
tiles of the tile space, while the run time reduction is mainly due to the transformation of a

non-rectangular tile to a rectangular one.

3.3 Parallelization

In this section, we refer to some parallelization aspects of the sequential tiled code. Recall from
Figure 3.1 that the parallelization of an arbitrarily tiled algorithm involves two separate tasks:
first, the generation of the sequential tiled code and, second, the parallelization of this code.
§3.2 focused on the first task. This section will focus on the second one. Parallelization can
be separated in sub-tasks such as iteration distribution, data distribution and data transferring
code generation. Tang and Xue in [TX00] addressed the same issues for rectangularly tiled
iteration spaces. In this section, as in [GDAKO02a], [Gou03], efficient data parallel code for
non-rectangular tiles will be discussed, without imposing any further complexity.

When executing an algorithm on a distributed memory machine, the original data space of
the algorithm is distributed to the local memories of the processing nodes. The local data space
of each node is in general a non-rectangular subset of the original data space, even if rectangular
tiling is applied [AKN95]. However, applying the transformations proposed in §3.2.2, each
processor can iterate over a rectangular local iteration space (TTIS) and access rectangular
data spaces as well. In this way, each processor can allocate exactly the required amount of
memory. Rectangular data spaces also allow for straightforward addressing schemes of array
elements and thus a direct way of sweeping data by the generated code.

Another very important benefit in parallelization using rectangular local iteration spaces
(TTIS) is the convenient determination of the communication sets. Each communication set
contains the communication points, i.e. the points that are written in the local memory of
a processing node and are needed by another. The communication points have the following
property: if we add one dependence vector to them, then the resulting point lies in a tile assigned

to a different node. Figure 3.11 shows the communication points and sets when determined in
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Figure 3.11: Determining communication sets in the TIS and TTIS.

In case the following tile along a dimension has been assigned to a different processing node,
then the data calculated by the iterations of the corresponding grey area should be transferred
to it.

the TIS and in the TTIS. d; and dy are the dependences of the original algorithm, while d_’;
and d_’; are the transformed dependences in the TT'1S. It is obvious that, when working with
the rectangular TT'1S, the communication sets are much more easily determined since they are
rectangular as well. Note that these sets, indicated by grey areas should be transferred at run-
time only in case the following tile is assigned to a different node, according to the allocation

schemes that will be explored in detail in Chapters 4, 5.

3.3.1 Some more algorithmic assumptions

In addition to the restriction imposed by our algorithmic model in §2.2 and summarized in
Appendix B, in this section we also consider that the body of the perfectly nested loops is
consisted of a statement of the form:

-,

Alfu(7)] = F(AlfulG = V)]s, Alfu(F = dg)));

where:
1. j= (J1,-..,Jn) is the current iteration
2. d; = (di1y...,din), i = 1,...,q are the uniform and constant dependences of this code

segment, and

3. F, f, are functions.

In order to simplify the model, single assignment statements with one array variable have been

considered. Note, however, that this is only a notational restriction, since all of the techniques
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presented in this section can be adapted to multiple statements on multiple arrays. In addition
to previously defined spaces, in this section we shall use the data space, denoted DS, defined

as:
DS = {fu,(j)lj € J"}

where f,, is the write array reference.

The underlying architecture is considered a (n — 1)-dimensional processor mesh. Thus, each
processor is identified by a (n — 1)-dimensional vector denoted p;d. Note, however, that this is
not a physical restriction, but a convention for processor labelling. More generally, a bi-level
parallel architecture may be considered as a (n— 1)-dimensional mesh of SMP nodes (Symmetric
Multi-Processors). Each SMP node is identified by a (n— 1)-dimensional vector denoted smp_id.
In addition, we consider that each SMP node is consisted of a (n — 1)-dimensional mesh of CPUs
(processors) with m, CPUs along the z-th dimension. Each CPU is identified by a (n — 1)-
dimensional vector denoted cpvj,id (0 < epuid, < m, —1). Apparently, there is an one-to-one
correspondence between the global labels of processors and their labels inside a node. It holds
that

pid, = cpu_idy, + smp_id,m,

Inversely, it holds that
epu_idy = pid,%omy

smp_idy = |pidy/my |

The memory is physically distributed among nodes. Processors perform computations on local

data. In order to use data calculated by a different processor,

1. if they reside in the same node, they should only synchronize with each other in order to
make sure that the data neede have already been written to shared memory before used,

or

2. if they reside in different nodes, they should communicate with each other via message

passing or remote DMA, in order to exchange data that reside to remote memories.

The general intuition in the presented approach is that, since the iteration space is trans-
formed by H and H' into a space of rectangular tiles, each processor can work on its local share
of rectangular tiles and, following a proper memory allocation scheme, perform operations on
rectangular data spaces as well. After all computations have been completed, locally computed
data can be written back to the appropriate locations of the global data space. In this way, each
processor essentially works on iteration and data spaces that are both rectangular, and properly

translates from its local data space to the global one.
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3.3.2 Computation Distribution

Computation distribution determines which computations of the sequential tiled code will be
assigned to which processor. The n innermost loops of the sequential tiled code that access
the internal points of a tile will not be parallelized, and thus parallelization only involves the
distribution of tiles (traversed by the outermost n-dimensional loop) to processors. Hodzic
and Shang in [HS98] mapped all tiles along a specific dimension to the same processor and
used hyperplane IT = [1,...,1] as time scheduling vector. In addition to this, previous work
[AKPT99] in the field of UET-UCT task graphs has shown that if we map all tiles along the
dimension with the maximum length (i.e. maximum number of tiles) to the same processor,
then the overall scheduling is optimal, as long as the computation to communication ratio is
one. This conclusion will also be verified in §4.4.4 for a bi-level parallel architecture. However,
all research works resulting to this conclusion have assumed the existence of an infinite number
of processors. We will keep on this assumption in this section also. In Chapter 5 we shall propose
some allocation schemes in case there are fewer processors available than needed.

Let us denote the i-th dimension as the one with the maximum total length. According to the
above, all tiles indexed by j_é = (j7,...,57, ..., 75), where ji = const, k= 1,...,i—1,i+1,...,n
and lf < jZS < uf are executed by the same processor. The n—1 coordinates of a tile (excluding
j2) will identify the processor that a tile is going to be mapped to (pfd). All tiles along j?
are sequentially executed by the same processor, one after the other, in an order specified by
a linear time schedule. This means that, after the selection of index jZS with the maximum
trip count, we reorder all indices so that jZS becomes the innermost index. This corresponds to
loop index interchange or permutation. Since all dependence vectors d5 in JS are considered
lexicographically positive, the interchanging or reordering of indices is valid (see also [PW86]).
The boundaries of the reordered loop indices, in case of a non-rectangular tile space, can be

calculated by an application of the Fourier-Motzkin elimination method [BW95].

3.3.3 Data Distribution

In a NUMA architecture, the data space of the original algorithm is distributed to the local
memories of the various nodes forming the global data space. Data distribution decisions affect
the communication volume, since data that reside in one node may be needed for the computation
in another. In our approach we follow the computer-owns rule, which dictates that a processor
owns the data it writes. It means that data computed by a processor are directly written to
the local memory of the respective node. Communication occurs when a processor residing in
another node needs to read data computed in the former one. Substantially, the memory space
allocated by a node represents the space where computed data are to be stored. This means
that the processors of each node iterate over a number of transformed rectangular tiles (T'T15)

and can locally store their computed data to a rectangular data space. At the end of all their
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computations, the locally computed data can be placed to the appropriate positions of the global

data space (DS). Thus, concerning the data writes, we can distinguish the following phases:

1. Data (initial and boundary values) are distributed to the local memories of the nodes,

according to the computer-owns rule.

2. Data are locally computed by the processors of each node. Communication is interleaved
between the execution of two tiles in order to receive data from neighboring nodes needed

during the execution of subsequent tiles. The data received are locally stored.

3. At the end of all computations, locally computed data are written to the global data space
(DS).

A simplified version of this procedure, concerning single CPU nodes, is extensively described in
[GDAKO02a], [Gou03].

The data space computed by a tile could be an exact image of the T'T'S, but in this case
the holes of the TT'1.S would correspond to unused extra space. In addition to the space storing
the computed data, each node needs to allocate extra space for communication, that is memory

space to store the data it receives from its neighbors. This means that we need to
1. condense the actual points of the T'T'1.S and
2. provide further space for receiving data.
Since, after all transformations, we finally work with rectangular sets, this local data space

(denoted LDS) allocated by a node, is given by the following definition.

@® Computation Storage
© Communication Storage
O Unused Space

Data that should be transferred

LDS to the neighboring node TTIS

P I
2OOOOO.............................. ool NolNoNoNoN NeNe)
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Figure 3.12: Local data space LDS and transformed tile iteration space TTI1S
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Definition 3.1 The local data space (LDS) is defined as:

0 <l < of fx + mpvr/Wpr k=1,...,nk #i

N0 < 5 < of fi + [tvi /Wi

LDS = j" e Z"|

where |t| denotes the mazimum number of tiles assigned to a processor of the particular node.

As shown in Figure 3.12, the LDS of a processor consists of the memory space required for
packing computed data (black dots) and for unpacking received data (grey dots) of a tile, multi-
plied by the number of tiles assigned to the particular processor. White dots depict unused data.
The offset of fi, which expands the space to store received data, derives from the communication
criteria of the algorithm, as shown in §3.3.4. Recall that each processor iterates over the TT1S
for as many times as the number of tiles assigned to that processor. Lemma 3.5 determines the
translation function from TTIS to LDS, while Lemma 3.6 determines the inverse translation
function from LDS to TTIS.

Lemma 3.5 If ]T; € TTIS, then its corresponding point in LDS is given by the following

ETPTESSLONS:

gt = [(cpu_idyvgy + 31) /W k) + of frk # i
g = [(tvi + jz{)/}?iij +offi

where t is the current tile. We call this transformation function as map(): j7’ = map(f;,t).

Proof: In order to prove the validity of this transformation, we need to prove that the
resulting point j7’ € LDS.

-/
1. For each k # i it holds that 0 < j; < vg, = 0 < L»}{/’“J < Z’f’“ ém;M—i-
kk

of fr < w + L Ji J +of fr < W’i%,w + of fr. Taking into account that
kk

0 < Cpufl k < my 5 th p vious Znequllll’ty gl"l}es Of }k < cuhi /[//kvkk C.} fk‘ <— -7]{} <
]l — e pre kk

/ /
h‘kk hkk

-/
2. In addition, 0 < ji <v; = 0 < | 2] < 20 = Qo 4 of f; < St 4 L J +offi <
(Hl Yt of f;. Taking into account that O <t< \t| — 1, the previous mequality gives
. t+1)vi; t|vig
Offi < W toffi <l < %4'0,}0]}' < %‘}'Offi-

Therefore, it holds that j" = map(j_;,t) € LDS. In addition, the proof of item (1) gives that
the corresponding parts of LDS for each CPU of a node have no common elements, but they
are neighboring iff CPUs are neighboring. The proof of item (2) gives that the corresponding
parts of LDS for each tile of a processor have no common elements, but they are neighboring

iff tiles are neighboring. -
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Lemma 3.6 If j7’ € LDS, then its corresponding point in TTIS is given by the following

exTPTession:
j_; = H'%
where X is given by:
= ji — of fr — epusidyvr/ Wik — (O /i) /W g ), ke #
=1

i—1
wi = = of fi — tvia/ W — | (O wmilu) /Wi
=1

where t = |(ji — of fi)h P iivii| is the current tile. We call this transformation function as

map~*(): (7', ) = map~' (j7).

Proof: We need to prove that map and map—! are indeed inverse functions. Equivalently,
we should prove that

1. (Jﬁ/at) = map_l(map(jﬂ',t)) and

2. j" = map(map (j")).

’ L“Lf“”“woffn —of fi)l,

: | @
1. (§7,t) = map~*(map(7’, 1)) = \ :
?
= Z lk;yk (b)
- kz—:lﬁ/
. k1Yl
ye = ([P | L of fi) — of fi — Ptk | Eo— | ki
where: kk iy kR
tv“+ 3! tv“ z; P
yi = (l=— J+0ffz) of fi — )*LT
k71~ 1
i 121 P
J— k _ = _
tv”+J = il T
. (L ZJ‘*‘Offz) of fi)h}; 2 L;T_Z_Jhu‘
(a} Howe/uer} t - \‘ Vis J = t = t + L i J FTOm 0 S jfz <
vii:OSL%J<%:>O§H—ijh;i<vii:>0§L%j<1:>
|2 )R |- J ki, )
| —i—] = 0. Thus, t—t—f—L — | & t =t + 0, which is always valid.
k—1_ k—1_
> b Z hi vt
(b) In addition, from y, = L%’“J | =% L —| =
) . h}, R hkk
l; ﬁ;“lyl T zglﬁ;dyl ./ 121 hklyl T
_E;Ck J - hkkL _ﬁ; J <Jp < kkLTJ + hkk — 1. In this interval,



80 Automatic parallel code generation for tiled nested loops

there is exactly one actual point j;, (as %;@k is the step of j;. in order to meet another

k ko
actual point), which is Y hy,y;. Therefore, it holds that j;, = > hi,u.
I=1 =1

2.
k 3\
R cpuidpvge+ Y hi,z
R S of k£
J7 = map(map™' (7)) A (3.18)
2 tvzz"l‘z hllzl
]z{,: LTJ+OffZ )
-1
-1/ cpu_id;v kzl w2 :
a =gy —of fy— iy _ i g
where: . i U =
-1/ tvi; kgl h;ka
zi=Jji —offi— 5+ — [*=5—]
[
-1/ cpu 1d v Z hEka .
= of i+ e =T g
i (3.19)
¢ Z h ik Pk
= Offl 'Uzz + {k 1h/ J
Therefore, (3.18) < @19
k _ k
» Y hga o, cpudidpvget D hiyz
of fi+ Wutv | ET Lo B of ki
R kg kk hkk
A
t i: ~1kzk 2 tvzri’z h
offi+ i | L T o

which is apparently always valid, taking into account that vgy is always a multiple of
Ry, Vk=1,...,n

After proving both claims (1) and (2), it turns out that this lemma is always valid. =

Function map( t) determines, according to Lemma 3.5, the memory location in LD.S where
computation for iteration j' € TTIS is to be stored (Figure 3.12). Function loc(j) in Table 3.8
uses map(f’, t) in order to locate the processor pZd and the memory location j7’ € LDS, where
the computed data of iteration point j € J" is to be stored. Inversely, Table 3.9 shows the series
of steps in order to locate the corresponding ; € J" for a point j7’ € LDS of processor pfd. Thus,
loc™1() is called by a processor of each node at the end of the node’s computations in order to
transit from their LDS to the original iteration space J™. In the sequel, the corresponding point

in the data space DS is found via f,, (Figure 3.13).
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Figure 3.13: Relations between DS, J" and LDS

Table 3.8: Using function loc() to locate j € J™ in the LDS of a processor

= =

j" = map(j’, t):
Jr = [(epu-idivir + ji) /W er) + of fu, k # i
Ji = (tvis + ji) /W] + of fi

75 = | Hj]
j'=H'(j — Pj®)
jq’ = map(f’,jis — mm{lf )
pd = (]iga a]ila]gla a]g)

Under this scheme, each node allocates exactly the amount of local memory needed for
computation and communication (minor over-allocation occurs in the few boundary tiles). Note
that direct allocation of a node’s share in the original DS would lead to a waste of memory
space, since this generally non-rectangular share would lead to the allocation of the minimum
enclosing rectangular memory space. Note, also, that each node’s share in the original DS
(the footprint of a tile because of f,,) is in general non-rectangular, even if a rectangular tiling
transformation is applied. This method, however, forces the local data space of each node to be
rectangular, allowing thus more efficient memory management. In addition, if we also take into
account that data spaces for common computationally intensive algorithms are very large, and
will probably not fit in each node’s memory, the compression of the local space to the LDS is in
most cases necessary. Eventually, this leads to a trade-off between computational complexity and
allocated memory space, since extra expressions are needed to address the LD.S, but this minor
overhead does not significantly affect performance, as indicated by the experimental verification
of [GDAKO2a]. Finally, note that storing data accessed by a non-rectangular tile to a dense

rectangular data space also exploits cache locality.
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Table 3.9: Using function loc™!() to locate j" € LDS of processor p?d in J"

(7.£) = map”*(j7)
t =[] — of fi)lii/vii)

- k—1 -
Ty = Jp — of fx — cpuidpvgr /P ke — (32 b/ wa) /W k), k # i
=1
~ -1
x; = ji —of fi —tvi/Wi — (3 xih/sy) /W i)
=1

— H'Z

=y

=

7 =loc ' (5", pid):
J' = map~t (")
§% = (pidy, ..., pids_1,t + min{IS}, pidsss, .., pidy)
j=PVi5+ )

3.3.4 Communication sets

Using the iteration and data distribution schemes described before, data that reside in the local
memory of one node may be needed by another due to algorithmic dependences. In this case,
the nodes need to communicate via message passing or remote DMA. The two fundamental

issues that need to be addressed regarding communication are
1. the specification of the processors each processor needs to communicate with, and
2. the determination of the data that need to be transferred.

As far as the first issue is concerned, each processor needs to exchange data with its neighbors
only in case they reside in a different node. That is, processors with cpu_id, = 0 < pid,%m, = 0
need to receive data from processors with pid!, = pid, — 1. Similarly, processors with cpu_id, =
my — 1 < pid,%m,; = m, — 1 should send data to neighboring processors with pid., = pid, + 1
(see Figure 3.14). When neighboring processors reside in the same node, they should only
synchronize with each other, in order to make sure that data have been written to the shared
memory of the node before used.

As far as the communication data are concerned, we focus on the communication points, as

defined below:

Definition 3.2 Let i be the mapping dimension. Let d5 € DS be a tile dependence that implies
processor dependence, that is 3l # 1 : dls #0. A point j_; € TTIS is considered a communication
point respective to 5 iff the computed data at iteration ; = P’(Vj_é+j7) is needed by tile j_é—kd_é,
where j_é e JS and j_:q + 5 ¢ J%, and j_é + d5 has been allocated to a different node than j_é.
Note that a communication point is only defined in respect to a specific tile dependence ds.

In other words, communication points in the TT 1S correspond to iterations at which data are

computed by one node and need to be sent to another node in tile direction d>.
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Figure 3.14: Communication among processors.

Only processors with neighbors in a different node need to transfer data among them. Neighboring
processors within the same node should only synchronize with each other, in order to make sure
that data have been written to the shared memory of the node before used.

We further exploit the regularity of the TT1S and LDS to deduce simple criteria for the

communication points at compile time. The following lemma is useful:

Lemma 3.7 A point j_7 = (44,...,J) € TTIS corresponds to a communication point respective

to a tile dependence d5 = (dsg, ..., dﬁ) e D% iff it holds:

Ji > di (vp — max {d}})
dep’

where k = 1,...,n,d € D', D' = H'D, and tile j_‘é + d5 has been allocated to a different node

than j_é.

Proof: For j_7 to be a communication point according to the k-th dimension, we distinguish
two cases:

1. df = 0. Since no tile dependence is enforced in this case, no limitation for jj. is defined.
So it holds 0 < j;. < vgg — 1.

2. df = 1. In this case, there must exist a data dependence in the TTIS deD such, that
the k-th component of j7 +d exceeds the respective bound of the TTIS, thus incurring
need for communication according to the k-th dimension. According to the above, it
must hold

Jrtd, > ver — 1= i +dj, > vk = i, > vpk — d,
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for some d eD or equivalently
Jr. > Vg — max {d}}
d'eD’
The unification of both cases leads to the given condition. o
Thus, it is advantageous to identify the communication data in the TTI1S, as opposed to the
other possible alternatives (e.g. the initial iteration space, the T'1S etc.) which would complicate

the communication procedure. Also, note that the offsets in LDS referenced in §3.3.3 can easily

arise as follows:
of fr = [max{d}} /W], Vk=1,...,n (3.20)
deD’

The instances of LDS corresponding to the communication points, as defined by Lemma 3.7,

can be calculated by the expression:
= Mo/ W (3.21)

for each tile dependence d% with df # 0.

Example 3.5: Continuing Example 3.4, we consider that the tiled nested loops will be
executed by a cluster of SMP nodes with 4 processors each. According to Figure 3.2, the
maximum total length corresponds to dimension jf. Thus, according to §3.3.2, jf should be

selected as the mapping dimension of this example.

) , , 2 —1 3 1 5 0
Since D' = H'D = = , the offset parameters of LDS are
-1 3 1 2 0 5

given by formula (3.20) as follows:
of fi = [max{d}}/h'1] = [5/1] =5
d'eD’

of f2 = [max{dy} /W3] = [5/5] = 1
d'eD’!

According to Definition 3.1, as depicted in Figure 3.12, the local data space LDS is defined as

follows:
LDS = {j" € Z"0 < j{ <5+ t]10/1 =5+ 10/{{ A0 < j§ < 1 +4-20/5 =17}

where |t| denotes the maximum number of tiles assigned to a processor of the particular node.

According to formula (3.21), as indicated in Figure 3.12, the data that are computed in this
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node and should be transferred to a neighboring one, reside in the positions of LDS with
jé, Z mgvgg/}?gg =4. 20/5 = 16.
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Execution of tiles onto clusters of
Symmetric Multiprocessors (SMP

nodes)

In this chapter, the execution policies of non-overlapping and overlapping commu-
nication with computation, are gemeralized, in order to be applied onto PC clusters
with more than one CPUs each. In order to achieve this generalization, we introduce
the technique of grouping, which is a tiling transformation applied onto tiles. Af-
terwards, we produce a linear time scheduling of groups, which seems to be optimal,
while any linear scheduling of tiles would be suboptimal, since the communication re-
quirements among tiles are different. We also indicate how computation tasks should
be allocated to the processors and we determine the guidelines for the selection of
the grouping parameters. Finally, we theoretically and experimentally validate the

techniques proposed.
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4.1 An Intuitive Approach

Before starting with the full demonstration of the proposed techniques, we will intuitively illus-
trate the basic concepts of our method, using an example. Let us consider the following scenario:
A 2-dimensional nested loop is to be executed onto a cluster of 3 identical single CPU nodes.
We tile the iteration space of the code segment and assign each row of tiles to a CPU node. In
order to achieve an easy allocation of tiles to CPUs, the size and shape of tiles should be selected
so that the iteration space is partitioned into 3 rows of tiles (since 3 CPUs are available). Then,
the tiles can be computed using either the overlapping, or the non-overlapping scheme presented
in §2.7.

Figure 4.1: Execution of tiles on single-CPU nodes.

If the cluster consists of 3 single-CPU nodes, the initial iteration space is partitioned into 3 rows
of tiles.

In the sequence, each single CPU node is replaced by an SMP node, with 2 CPUs. The
first solution one may think of, is tiling the initial iteration space from scratch, selecting the
tile size so as to get six rows of tiles. Then, a row of tiles may be assigned to each CPU and
executed as if there were six single CPU nodes. This would mean that even CPUs inside the
same SMP node should communicate with each other via message passing, in order to exchange
the data needed. The result of such a consideration may be unnecessary transfers from the
processing unit to the network card and vice versa, which will consume a portion of the intra-
node communication bandwidth. In the best case, when the compiler can detect and prevent
such unnecessary communication between the processor and the network card, it will not evict
unnecessary transfers among the shared and private space of threads inside the same SMP node
[DKO04]. In fact, they can simply write and read the data needed directly to and from shared
memory. Then, they should only synchronize with each other using a barrier or a semaphore.

The above consideration leads to the conclusion that iterations assigned to the same SMP
node should be more tightly connected to each other, than simply being mapped to neighboring
tiles. Maybe they can belong to the same tile, or to an entity inheriting some properties of
tiling,.

In order to adjust the tile space of Figure 4.1 to this computing architecture, we can split
each tile into two subtiles and assign each subtile to one of the CPUs of the corresponding SMP

node, as indicated in Figure 4.2. Then, one may schedule tiles as if they were unsplit and take
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care so as to execute subtiles of a tile at the same time.

.S
J2
node 2 H

node 1 } H : H : : : : H :

node 0 L = H H H H H . = .

—uvy

J
Figure 4.2: Execution of tiles on SMP nodes with 2 CPUs each.

Each tile of Figure 4.1 is divided into 2 subtiles and each CPU undertakes a subtile during each
time step.

Equivalently, the initial iteration space may be tiled from scratch, selecting the size of tiles
so as to form six rows of tiles. Then, one row of tiles is assigned to each CPU of the SMP
nodes neighboring tiles, assigned to the same SMP node, are grouped together, as in Figure 4.3.
Because of tile dependences, the tiles grouped together by this scheme cannot be simultaneously
executed, unless they are split into subtiles. Thus, additional synchronization overhead is nec-
essary due to dependences among subtiles, which have been assigned to different CPUs of the

same node, but should be executed during the same time step.

\
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Figure 4.3: Vertical grouping.

Neighboring tiles should be executed at the same time by CPUs of the same node. There are
dependences among tiles executed during the same time step.

A more efficient scheme can be obtained if the tiles assigned to the same SMP nodes are
grouped as indicated in Figure 4.4. Then, both tiles belonging to the same group can be
simultaneously executed by the CPUs of an SMP node, without a need for communication or
synchronization. Only one synchronization per tile is required, in order to certify that the data
needed are located in the shared memory. This synchronization (implemented by a barrier or a
semaphore) can be contemporary with the communication with CPUs of different SMP nodes.

In the rest of this thesis, we shall call this grouping scheme as hyperplane grouping.

On the contrary, any other grouping scheme along a specific dimension, such as the one pre-
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Figure 4.4: Hyperplane grouping.

There are no dependences among tiles executed during the same time step.

sented in Figure 4.3, will be called vertical grouping. Vertical grouping imposes additional

synchronization overhead, due to dependences among tiles of the same group.

4.2 Grouping Transformation

As shown in §4.1, efficient scheduling of tiled iteration spaces onto a parallel architecture con-
sisting of SMP nodes, is not a straightforward task. In order to generate an appropriate time
schedule, we need to group together the tiles of J° that can be concurrently executed by the
CPUs of the same SMP node. It can be achieved by applying an additional supernode, or tiling
transformation to the tile space J°. We name this supernode transformation as grouping

transformation.

Thus, from the tile space J° we produce the group space
J¢ = {5%15¢ = |H9%), 55 € I%} (4.1)

in correspondence to formula (2.4) for tiling. This grouping transformation is defined by the
n X n non-singular matrix H® (similarly to matrix H defining tiling transformation). In cor-
respondence to the tiling matrix H, the n x n matrix H® is called grouping matrix. Each
row-vector of H is perpendicular to one of the families of hyperplanes that define the bound-
aries of the groups in J°. The n x n matrix P¢ = (H%)~! is called inverse grouping matrix.
The matrix P should consist only of integer elements and its column-vectors are parallel and
equal in size to the edges of a group-hyperparallelepiped in J*.

In order to be valid, a grouping transformation should preserve the constraint of atomicity
of groups (HED® > 0 in correspondence to HD > 0 for tiling). In addition, since within a
group all tiles are concurrently executed by the CPUs of an SMP node, in order to preserve

data consistency, there should be no direct or indirect dependence among them. Equivalently,
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for each dependence vector df in the tile space, vector H Gdf should have at least one element

greater than or equal to 1.

4.3 Intuition of our algorithm

Thus, just as tiling transformation is used to summon iteration points into tiles, grouping trans-
formation is applied after tiling transformation, in order to form suitable groups of tiles. A
desirable tiling transformation is the one that minimizes communication overhead [Xue97a],
[AKN95], [RR02], [RS92], [BDRR94], or total execution time [HCF97], [HCF99], [DDRR97]
[XCO02]. Respectively, in the following paragraphs, we shall define the criteria for an efficient
grouping transformation and we shall propose a theory for determining it.

Let us consider a 3-dimensional tile space J°. We want to assign all tiles along dimension
§1 to the same CPU of an SMP node. Since all CPUs within a node have access to the shared
memory, neighboring rows of tiles, which exchange data, are assigned to the CPUs of the same
node. In this way, the part of the tile space assigned to a node will be of a rectangular shape,
as depicted in Figure 4.5.

isA cruna) cru@i)
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CPU(0,1) e CPU(3,1)

o ® o
*— *— *———h
° . I2

® ° )
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. °

CPU(0,0) é
CPU(2,0)
S CPU(1,0) CPU(3,0)

Ih

Figure 4.5: Set of tiles assigned to an SMP node.

All dots along a grey arrow correspond to tiles, which are assigned to the same CPU of the SMP
node. They are executed one after the other, during consecutive time steps.

We seek for an appropriate transformation matrix that will group together the tiles of Fig-
ure 4.5, which can be executed simultaneously by different CPUs. The execution of the portion
of the tile space, which has been assigned to an SMP node, resembles the execution of a UET
grid, as described in [AKPT99]. According to [AKPT99], the optimal valid linear scheduling
vector for an iteration space (or tile space) with unitary dependence vectors (as imposed by
§B.5), is (1,1,1), when the time required for communication is minimal. In our example, the

communication among CPUs of a node recoils to a synchronization. Thus, it may be considered
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conformal to the UET communication model. So, we shall group together the tiles that belong

to the same plane which is perpendicular to the vector (1,1, 1), as indicated in Figure 4.6.

Figure 4.6: Groups of tiles executed simultaneously in an SMP node.

The tiles of the same grey plane belong to the same group and will be executed at the same time
by different CPUs of the same node. Subfigures correspond to consecutive time steps.

The column-vectors of the inverse grouping matrix P define a hyper-parallelepiped (in
general) that contains the tiles of a group, similar to the way the columns of P define a tile.
Thus, vectors p;é and p;)é should be parallel to the plane jls + jQS + jg? = const and, at the same
time, they should be parallel to one of the planes defining the bounds of the set allocated to
this SMP node. That is, they should be parallel to the planes jg? =0 and jg = 0 respectively.
Therefore, the appropriate vectors are

-

pQG = >\(_17 17 0) and p_:),é = (_17 07 1)
(In Figures 4.5-4.7 it holds A = 4, u = 2.) In addition, in order to cover exactly the part of the
tile space allocated to an SMP node using a series of successive groups, vector plG should be

constructed parallel to both the planes jf =0 and qu = 0. Therefore, the appropriate vector is

p§ = (1,0,0)
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Thus, the appropriate inverse grouping matrix is

1 =X —pu
PS=10 X 0
0 0 u

where \, 4 € N. The maximum number of tiles grouped together will be det(P%) = Au and this
product must be equal to the number of CPUs inside a node, so as to assign one tile to each

CPU during each time step.

Figure 4.7: Constructing the inverse grouping matrix.

Vectors p§’ should be parallel to the edges of a group-parallelepiped. Their norm should be equal
to the length of the corresponding edge.

4.4 Determining P“ according to the number of CPUs within
an SMP node

Consider now the general case: We have an n-dimensional tiled iteration space and an homoge-
neous cluster of identical SMP nodes, each with m processors inside. Our objective is to assign
the tiles of J° along the first dimension to the same CPU of an SMP node. The natural number
m can be written as m = mo Xmg X - -+ Xm,,, where mo, ms,...,m, € N. The grouping matrices

are selected to be

1 —mg ... —my, 1 1
0 me ... 0 0o L ... 0
PG = ? o | and HG =(PO) L= | M2 T (4.2)
(0 0 m, | [0 0 ,;n |
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The maximum number of tiles contained inside a group is det(P%) = m, exactly equal to the
number of CPUs inside each SMP node.

Theorem 4.1 In the algorithmic model, which is summarized in Appendiz B, matrizc HC, de-

fined by formula (4.2), defines a legal grouping transformation.

Proof: In order to prove that HS defines a legal grouping transformation, it suffices to

prove that

1. HSD® >0, where D¥ is the dependence matriz of the tile space J°

2. any two tiles j_é,jsl within the same group are independent.

We have assumed (see §2.6.3 and restriction B.5) that the dependence matriz DS contains
only 0’s and 1’s. Consequently, the first condition is apparently valid.

In order to prove the second condition, we assume that the dependence matriz D° is equal
to the unitary matriz. FEven if there is a dependence vector with more than one 1’s, it is the
sum of more than one unitary dependence vectors. So it will be included in the following
proof as an indifect dependence:

If tiles jg,jsl € J® belong to the same group j?;, then it holds that:

. . . .q/ .q/ .ql
g5+t F T R R
.S .S/
- o 2 e 133 ]
[H™j%] = [H"j5 | = . = . =
s 5
L] L]
. . . . .g/ .q/ . !’ .ql
FAGE e =00 A0 et dn i
In addition, if there is a direct or an indirect dependence from j_:g to j5', it holds that

—

n
5 =35+ Nidi,
i=1

where \; € N and d; is a unitary dependence vector. The previous equality can be rewritten
as follows: 75" = j5 + X, where X = (A1,..., \n). Thus,

i =i+ i=1,..n

Therefore, the equality j3 + j5 +- - ~+j;5;_1 +45 = jf/+j§/+~ . ~+j;f_1/ +j§/ can be rewritten
as follows:
AM+A++ A, =0

As M, ..., \n € N, it holds that

Consequently, there is no direct or indirect dependence between two tiles belonging to the
same group j¢ € JE and all tiles of a group in JC can be computed simultaneously by the
CPUs of an SMP node. Thus, the above grouping transformation is valid according to our

algorithmic model. o
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Example 4.1:  We afford a cluster of SMP nodes with 2 CPUs and one NIC (Network
Interface Card) each. The NICs provide the facility of Direct Memory Access (DMA). Thus, the
overlapping execution policy can be implemented. We assume a 2-dimensional rectangular tile
space JS. Let us assign the tiles along dimension jls to the same CPU, as indicated in Figure 4.8

by the grey arrows. The CPUs of the same SMP node will process two neighboring rows of tiles.

Then, during the time step t=0, CPU 0 of SMP node 0 computes tile (0,0). During the time
step t = 1, CPU 0 of node 0 computes tile (1,0), while CPU 1 of the same SMP node computes
tile (0,1). Similarly, during the time step t = 2, CPU 0 computes tile (2,0), while CPU 1
computes tile (1,1). At the same time, the data computed in tile (0, 1), which are necessary for
the computation of tile (0,2), can be sent to node 1. During the time step t=3, the CPUs of
node 0 can continue the execution as above, while the CPUs of node 1 start executing the same

routine with the rows of tiles (e,2) and (e, 3).
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Figure 4.8: Example 4.1 - Tile space.

Grey dots correspond to tiles. Tiles along the same grey arrow will be executed by the same CPU
during consecutive time steps. The grey rounded rectangles indicate which tiles will be executes
by the CPUs of the same SMP node. The ovals indicate tiles that are grouped together and
will be executed by different CPUs of the same node, during the same time step. The black
arrows indicate dependences between tiles that will be executed in different SMP nodes and,
thus, require a data transfer. The labels in the ovals-groups or besides black arrows-dependences
indicate during which time step each group will be executed and each data transfer will take
place, according to the overlapping execution policy.

In order to construct a time schedule for this example, we group together the tiles that
should be concurrently executed by the same SMP node. In particular, we apply grouping to
the tile space J°, as indicated in Figure 4.8 and derive the group space J¢ (Figure 4.9). The

appropriate grouping matrices, according to formula (4.2), for this case are

1 -2
0 2

1
0

PC =

] and H® = (P%)~1 = [

N[—= =
| S
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JS group(3,1)
3 4 5 6 7 8 9 10
nodel O o
2 3 4/ 5 6 7 8
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group(3,0) 1

Figure 4.9: Example 4.1 - Group space.

Grey dots correspond to groups arising when applying the selected grouping transformation to
the tile space of Figure 4.8. Groups along the same grey arrow will be executed in the same SMP
node during consecutive time steps. As in Figure 4.8, the black arrows indicate dependences
between groups that will be executed in different SMP nodes and, thus, require a data transfer.
The labels besides the dots-groups or black arrows-dependences indicate during which time step
each group will be executed and each data transfer will take place, according to the overlapping
execution policy.

In this way, tiles (1,0) and (0,1) which, as we have already mentioned, are simultaneously
executed by the same SMP node, are grouped together in j_é = |HY(1,0)T] = |[HY(0,1)T]| =
(1,0)”. Similarly, tiles (2,0) and (1, 1) are grouped together in j_é = (2,0)T. In Figures 4.8-4.9,

the time step, when each group will be computed, is shown, together with the time step, when

each data transfer will take place.

Table 4.1: Example 4.1

The columns labelled as “CPU x” indicate which tile will be executed by each CPU of an SMP
node during each time step, according to the overlapping execution policy. The columns labelled
as “group” indicate the group corresponding to the tiles executed by both CPUs of an SMP node
at the same time.

Time node 0 node 1

Step | CPUO CPU 1 | group | CPUO0 CPU 1 | group
0

ke

1
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In Table 4.1, we indicate the tiles of the tile space J° that will be executed by each CPU

of the first 2 SMP nodes during a time step and their corresponding group coordinates. It

can be easily deduced that a group j_é = (jlc,jg) € JE will be executed during the time step

t(jé) = j¥ + ;¥ in the SMP node j§. Therefore, the linear time scheduling vector for this
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example is TI¢ = (1,1).

Example 4.2: In case the NICs of our cluster do not support DMA, then Example 4.1 should
be modified as follows: During the time step t=0, CPU 0 of the SMP node 0 computes tile (0, 0).
During the time step t = 1, CPU 0 of node 0 computes tile (1,0), while CPU 1 of the same SMP
node computes tile (0,1). Just when the computation of both tiles is completed, data needed
for the computation of tile (2,0), which have just been computed in node 0 are transferred to
node 1. During the time step ¢t = 2, the CPUs of node 0 can continue the execution as above,

while the CPUs of node 1 start executing the same routine with the rows of tiles (e,2) and (e, 3).
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Figure 4.10: Example 4.2 - Tile space.

As in Figure 4.8, the labels in the ovals-groups or besides black arrows-dependences indicate
during which time step each group will be executed and each data transfer will take place,
according to the non-overlapping execution policy.

group(3,1)

::::: X{X///L

Figure 4.11: Example 4.2 - Group space.

As in Figure 4.9, the labels besides the dots-groups or black arrows-dependences indicate during
which time step each group will be executed and each data transfer will take place, according to
the non-overlapping execution policy.

In order to construct a time schedule for this example, as in Example 4.1, we group to-
gether the tiles that should be concurrently executed by the same SMP node. In particular,
we apply grouping to the tile space J°, as indicated in Figure 4.10 and derive the group space
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JC (Figure 4.11). The grouping matrices are identical to the ones used in Example 4.1. In
Figures 4.10-4.11, the time step, when each group will be computed, is shown, together with the

time step, when each data transfer will take place.

Table 4.2: Example 4.2

As in Table 4.1, the columns labelled as “"CPU x" indicate which tile will be executed by each
CPU of an SMP node during each time step, according to the non-overlapping execution policy.
The columns labelled as “group” indicate the group corresponding to the tiles executed by both
CPUs of an SMP node at the same time.

Time node 0 node 1

Step | CPUO CPU 1 | CPU O CPU 1 | group
0

R
-
=}
=

T

1

=R = W= N
N N N

S ) N ) N N N Ny

S N ) N P N Ny
N N N N N N
O O O WO NO +O O

[S%)

N N N N N N
O OO O WO NO +O O
N N N N N
N i S e R =)
N\ N ) N L N Ny

N WK NN =N O

A N L N Ny
N N N N

N N N N

D)

In Table 4.2, we indicate the tiles of the tile space J° that will be executed by each CPU

of the first 2 SMP nodes during a time step and their corresponding group coordinates. It
can be easily deduced that a group ja = (¢, 4§) € JY will be executed during the time step
t(j_é) = j% in the SMP node j$'. Therefore, the linear time scheduling vector for this example is
¢ = (1,0). Thus, we may equivalently schedule tiles, instead of groups, using the linear time

scheduling vector IT = (1, 1).

4.4.1 Linear time schedule

Theorem 4.2 When applying the overlapping execution policy, the appropriate linear time

scheduling vector for the group space derived by grouping, as defined in formula (4.2), is TIC =

(1,1,...,1).
Proof:  Applying the grouping transformation defined by formula (4.2), the 1-st column-
vector of the dependence matriz DS = I is transformed to the vector d?l = HGal*l9 =
(1,0,...,0)T. In addition, the j-th column-vector of the dependence matriz DS =1 j=
2,...,n, is transformed to the vector

. 1
HGdf:(1,0,“.;07770’,,,’0)T.
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Thus, it imposes group dependences
1
(1,0,...,0, LEJ,O,...,O)T =(1,0,...,0,0,0,...,0)T

and

11 ... 1
1 0 0
DY =
00 ... 10
0 0
We are searching for an appropriate linear time scheduling vector TI¢ = (7§, ... ,Wg)

such that each group j_é € JC is computed during the time step t = HGj_é. Consider the
last (n— 1) coordinates of a group indicating which SMP node of the cluster will exzecute this
group. Then, groups j_é = (5%,...,59) and ja' = (3% +1,5§,...,7%) will be successively
computed within the same SMP node. There is a dependence between them, as indicated by
the first column of D, but there is no need for a communication step between their successive
computation steps, because the necessary data are already l_{)cated in the local shared memory
of the SMP node. Consequently, their time distance I1¢ G’ — HGja = 7 may be equal to
1. Thus, 7 = 1. In addition, the i-th column of D¢ (i = 2,...n) imposes a dependence
between groupsj_é = (¢, ..., 5% andja/ = (F+1,58, . 8,08 +1,58 .., 5S). These
groups are executed in neighboring SMP nodes, thus a communication step is required between
their computation steps. It means that their time distance HGjGI—HGjE; =7 + 7 must be
equal to 2. Consequently, 7& =1, i =2,...,n. So, the vector 11 = (1,1,...,1) is selected

K2

for the linear time scheduling of our group space JC. -

Notice that, in [GSKO01], [STKO02], for the single CPU pipelined schedule, IT was (1,2,...,2)
according to the UET-UCT theory [AKPT99]. In other words, the optimal overlapping schedule
could be achieved when we had equal computation to communication times, so that all commu-
nication could be hidden (overlapped) with the computation phase. Nevertheless, in the SMP
case presented here, the labeling of coordinates of groups, that is the grouping transformation
P%, slightly skews the space (see Figure 4.8 and the resulting group space in Figure 4.9, the
relative positions of groups (3,0) and (3,1)). So the optimal overlapping schedule is achieved
by (1,1,...,1). Notice, also, that this scheduling vector is not the same with Hodzic’s [HS98]

scheduling vector, since we are now referring to groups, while Hodzic was scheduling tiles.

Theorem 4.3 When applying the non-overlapping execution policy, the appropriate linear time
scheduling vector for the group space derived by grouping, as defined in formula (4.2), is TIC =
(1,0,...,0).
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Proof: As in the proof of Theorem /.2, the dependence matriz of the group space is:

We are searching, agam for an appropriate linear time scheduling vector 1€ = (7§, ... 7€)
such that each group j¢ € JC is computed during the time step t = I1¢ iG. Consider the last
(n—1) coordinates of a group 'mdzcatmg whzch SMP node of the cluster will execute this group.
Then, groups jG = (3%,...,39) and jG" = (¢ + 1,55, ..., 7<) will be successively computed
within the same SMP node. Consequently, their time distance HGjal — HGj_é =7 may be
equal to 1. Thus 7 = 1. In addition, the i-th column of DY (i = 2,...n) imposes a depen-
dence between groups j& = (G, ...,59) andjél =Y +1,48, . 0808+ 1,55, . 08).
These groups are executed in neighboring SMP nodes, thus a data transfer should take place
between the respective computations. In contrast to the overlapping execution policy, this
data transfer may take place during the time step, when data are computed just after the
completion of computation. Thus, their time distance 11¢; G’ — 115 G = =7+ 7r may be
equal to 1. Consequently, 7¢ =0, i = 2,...,n. So, the vector 1% = (1,0,...,0) is selected

or the linear time scheduling of our group space JC. =
[ g group sp

As in Example 4.2, notice that linear scheduling of groups, using vector II = (1,0,...,0),
is equivalent to linear scheduling of tiles, using vector IT = (1,1,...,1). Thus, the only reasons

for grouping tiles, when an overlapping execution is not possible, or not desired, are
1. comparison with the overlapping execution

2. emphasizing the fact that data originating in the same group, albeit in different tiles, may

be transferred in a single message.

Example 4.3: Consider a rectangular n-dimensional tile space J%: 0 < jf < uf, i=1,...,n

and uf > uS 1 =2,...,n. We apply grouping transformation, according to the formula (4.2).
S

Thus, tile j5 belongs to group j& = (Z 37, Lm2J o L )T

Accordlng to the overlapplng executlon policy, it will be executed during the time step

t(j ) Z]Z ZL + ZL]Z | (according to the linear time scheduling vector II¢ =

(1 1,. 1)) Group (O 0, 0) w1ll be executed during the first time step tmm = 0. Group

S
(Z u?, R i = |) will be computed during the last time step tpe. = Z uf + EL J
=1 =2
Thus, the number of time steps required for the completion of the execution (makespan), is:
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poverlap:1+tmaw_mzn—zu +ZL J Z(wf_l)'FZLwlT:lJ_Fl =

overlap Zw + Z[ —2n+2 (43)

where w; = uj + 1,4 =1,...,n is the width of the tile space along dimension 1.

Similarly, following the non-overlapping execution policy, group
~ .5 J3 Jn T
G = B — “ e 7”
SIEATARE)

N n
will be executed during the time step ¢(j¢) = j1G => jis (according to the linear time scheduling

i=1
vector HG (1,0,...,0)). Group (0,0,0) will be executed during the first time step ¢, = 0.
n
Group (z u?, LmQJ ce L%J) will be computed during the last time step tyar = Y, u?.
’ i=1

Thus, the number of time steps required for the completion of the execution (makespan), is:

n
pnonoverlap =1+ tmaz — tmin = Z UZS +1=
i=1

nonoverlap Z w; —n +1 (44)

4.4.2 Assigning Tiles to CPUs

For node labelling reasons, consider that the available SMP nodes form a virtual (n — 1)-
dimensional mesh. Thus, each node is identified by a (n — 1)-dimensional vector. Note, however,
that it is not a physical layout restriction, but a convention to give each node a unique tag. Then,

the last (n — 1) coordinates of a group indicate the SMP into which it will be executed. The

first coordinate affects only the time of its execution. Thus, a tile j_:9 = (7,... ,jn) belonging
S s
to group j& = (j7, ..., j5), will be executed in node (55, ...,j5) = (|2% ], ..., LWJTT:LJ)

Similarly, inside each SMP node we consider a (n — 1)-dimensional CPU virtual mesh con-

taining labels {cpu € Z"7 10 < epuy < myi1,1 < x < n—1}. Then, a tile ij = (57,...,72)
.S

will be executed by CPU (j5 %ma, . .., ji; %omy) of SMP node ([ 2], ...,

only tiles with the same coordinate jf will be assigned to the same CPU of the same node.

j ). So, apparently,

mn

In addition, note that, if one of the diagonal elements of the inverse grouping matrix m.,

equals to 1, then the corresponding coordinate of the CPU identification vector can be omitted,
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as it will always equal 0.

4.4.3 Generalization: Grouping tiles along an arbitrary dimension of J°

If we want to assign the iterations along the i-th dimension of J° to the same CPU of an SMP

node, then it can be similarly proven that the appropriate grouping matrices are

[ 0 0 0 0 ]
0 oo mi—1 0 0 . 0
PG - -mi ... —MmM;—_1 1 —Mi4+1 ... —Mp
0 0 0 0 my,
B ) TS (4.5)
. 0 0 O 0
1
0 v 0 O 0
HE =(PH=t=| 1 1 1 1 1
0 ... 0 1 0
mi+1
1
I 0 0 0 O e
where mq X -+ X m;_1 X myy1 X -+- X m, = m. As previously, the time scheduling vector is

% = (1,...,1) if the overlapping execution policy is followed, or II¢ = (0,...,0,1,0,...,0)
otherwise. In addition, tile qu = (j7,...,42) belonging to group jé = (§¢,...,45), will be
executed within node (jC,..., 5%, 7% ,,...,4¢) by CPU (¥ %mu, ..., 55 %omi—1, i, Yomiya,
.y 5%my). As previously, if one of the diagonal elements of the inverse grouping matrix
my; = 1,x # i, then the corresponding coordinate of the CPU identification vector can be

omitted.

Example 4.4: We have a cluster of SMP nodes with 2 CPUs and a NIC each. We assume a
3-dimensional rectangular tile space J°. Let us assign the tiles along dimension j§ to the same
CPU, as indicated in Figure 4.12 by the grey arrows. The CPUs of the same SMP node will
execute two neighboring rows of tiles, which belong to the same jf — jf plane. In respect to the

formula (4.5), we choose the grouping matrices to be:



4.4 Determining P¢ according to the number of CPUs within an SMP node 103

2 0 0 3 00
P=] 0 1 0|andH =P =01 0
-2 -1 1 111

node(1,0)

Figure 4.12: Example 4.4 - 2 x 1 CPUs per SMP node - Overlapping execution.

All tiles along the same grey arrow will be executed by the same CPU during consecutive time
steps. The grey areas indicate which tiles will be executes by the CPUs of the same SMP node.
The ovals indicate tiles that are grouped together and will be executed by different CPUs of the
same node, during the same time step. The black arrows indicate dependences between tiles
that will be executed in different SMP nodes and, thus, require a data transfer. The labels in
the ovals-groups or besides black arrows-dependences indicate during which time step each group
will be executed and each data transfer will take place, according to the overlapping execution

policy.

In Figure 4.12 we show the grouping of tiles and when each computation step and each
communication step will take place, according to the overlapping execution policy. In Table 4.3,
we indicate the tiles of J° that will be executed by each CPU of the 3 neighboring SMP nodes
(0,1), (0,0), (1,0) during each time step. It can be easily deduced that a group (j¢, 5§, 5§) € J¢
will be executed in node (57, ;$) during the time step t(j_é) = j + 5§ + j§. Therefore, as

expected, the linear time scheduling vector for this example is I1¢ = (1,1, 1).

Similarly, in Figure 4.13, we show the grouping of tiles and when each computation step and
each communication step will be executed, according to the non-overlapping execution policy.
In Table 4.4, we indicate the tiles of J° that will be executed by each CPU of the 3 neighboring
SMP nodes (0,1), (0,0), (1,0) during each time step. It can be easily deduced that a group
(55,48, 35) € JE will be executed in node (5{, j§) during the time step t(j_é) = j$'. Therefore,

as expected, the linear time scheduling vector for this example is TI¢ = (0,0, 1).
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Table 4.3: Example 4.4 - 2 x 1 CPUs per SMP node - Overlapping execution

Time node (0,1) node (0,0) node (1,0)
Step | CPUO CPU 1 ‘ group | CPU 0 CPU 1 ‘ group | CPU 0 CPU 1 ‘ group
0 0
0 0 0
0 0
0 1 0
1 0 0 0
1 0 1
0 0 0 1 0
2 1 1 0 0 0
0 1 2 1 2
0 1 0 0 1 0 2 1
3 1 1 1 0 0 0 0 0
1 ) 0 ) 2 3 2 3 0 ( 2
0 1 0 0 1 0 2 3 1
4 1 1 1 0 0 0 0 0 0
2 1 3 4 3 4 1 0 3
0 1 0 0 1 0 2 3 1
H 1 1 1 0 0 0 0 0 0
3 2 4 5 4 5 2 1 4

.S
J2 node(0,1) node(1,1)
T o) 2 3 o)

node(1,0)

Figure 4.13: Example 4.4 - 2 x 1 CPUs per SMP node - Non-overlapping execution

Example 4.5: We have a cluster of SMP nodes with 4 CPUs and a NIC each. As previously,
we assume a 3-dimensional rectangular tile space J°. Let us assign the tiles along dimension j§
to the same CPU, as indicated in Figure 4.14 by the grey arrows. The CPUs of the same SMP

node will undertake 4 neighboring lines of tiles which belong to the same j{ — qu plane.

According to formula (4.5), we choose the grouping matrices to be

4 0 0 $ 00
PC=| 0 1 0|andH =P '=|0 1 0
-4 -1 1 111

In Figure 4.14 we indicate the grouping of tiles and during which time step each computation
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Table 4.4: Example 4.4 - 2 x 1 CPUs per SMP node - Non-overlapping execution

Time node (0,1) node (0,0) node (1,0)
Step | CPUO CPU 1 | group | CPUO CPU 1 | CPU 0 CPU 1 | group
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step and each communication step will take place, following the overlapping execution policy. In
Table 4.5 we indicate which tiles of the tile space J° will be executed by each CPU of the first 3
SMP nodes of our cluster during a time step. In addition, we indicate which is the corresponding
group of JY. Tt can be easily deduced from Table 4.5 that a group (¥, j¥,j§) € J will be
executed in the SMP node (5§, j5) during the time step t(j_é) = j¥ + 5§ + j$. Therefore, the

linear time scheduling vector for this example is I = (1,1, 1).

Similarly, in Figure 4.15 we indicate the grouping of tiles and during which time step each
computation step and each communication step will take place, following the non-overlapping
execution policy. In Table 4.6 we indicate which tiles of the tile space J° will be executed
by each CPU of the first 3 SMP nodes of our cluster during a time step. In addition, we
indicate which is the corresponding group of J&. It can be easily deduced from Table 4.6 that
a group (j,5¢,5§) € J¢ will be executed in the SMP node (j¥,j$') during the time step
t(jé) = j3G = 7+ jg + j35 Therefore, the linear time scheduling vector for this example is
1% = (0,0,1).

Example 4.6: We have a cluster of SMP nodes with 4 CPUs and a NIC each. As previously,
we assume a 3-dimensional rectangular tile space J°. The CPUs of the same SMP node under-

take 4 neighboring lines of tiles whose projection on the jig — jg plane forms a square. Thus,
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7

node(O,jI)

node(1,0)

Figure 4.14: Example 4.5 - 4 x 1 CPUs per SMP node - Overlapping execution.

As in Figure 4.12, the labels in the ovals-groups or besides black arrows-dependences indicate
during which time step each group will be executed and each data transfer will take place,
according to the overlapping execution policy.

according to formula (4.5), the grouping matrices are

2 0 0 30
PS=| 0 2 0| andHS=(P% = 0 L 0
-2 -2 1 111

In Figure 4.16, we indicate which tiles of JS will be undertaken by each SMP node. In
Figure 4.17, we have zoomed to the part of J° assigned to an SMP node and we indicate which
tiles of this part will be executed simultaneously by different CPUs. These tiles belong to the
same grey plane. In Table 4.7 we indicate which tiles of the tile space J° will be executed by
each CPU of the first 3 SMP nodes of our cluster during a time step, following the overlapping
execution policy. In addition, we indicate which is the corresponding group of J“. As in
Examples 4.4 and 4.5, it can be deduced that a group (le,jg,jg) e JC will be executed in
SMP node (5¢,5§) during the time step t(j_é) = j¢ + 3§ + j§. Therefore, the linear time
scheduling vector for this example is II¢ = (1,1, 1).

Similarly, in Table 4.8 we indicate which tiles of the tile space J° will be executed by each
CPU of the first 3 SMP nodes of our cluster during a time step, following the non-overlapping
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Table 4.5: Example 4.5 - 4 x 1 CPUs per SMP node - Overlapping execution.

Since CPUs inside an SMP node form a 4 x 1 mesh, we have omitted the second dimension when

labelling CPUs. It would be always equal to 0, as explained in page 102.

Time node (0,0)
Step | CPUO CPU1 CPU2 CPU 3 | group
0 0
0 0 0
0 0
0 1 0
1 0 0 0
1 0 1
0 1 2 0
2 0 0 0 0
2 1 0 2
0 1 2 3 0
3 0 0 0 0 0
3 2 1 0 3
0 1 2 3 0
4 0 0 0 0 0
4 3 2 1 4
0 1 2 3 0
5 0 0 0 0 0
5 4 2 5
Time node (0,1)
Step | CPUO CPU1 CPU2 CPU 3 | group
0 0
2 1 1
0 1
0 1 0
3 1 1 1
1 0 2
0 1 2 0
4 1 1 1 1
2 1 0 3
0 1 2 3 0
5 1 1 1 1 1
3 2 1 0 4
Time node (1,0)
Step | CPFUO CPU1 CPU2 CPU 3 | group
4 1
5 0 0
0 4

execution policy. Once again, it can be deduced that a group (jf,jgjg) € JC will be executed

in SMP node (5, j$) during the time step t(j_é) = j§ = j§7 + 45 + 55

time scheduling vector for this example is TI¢ =

(0,0, 1).

Therefore, the linear
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Figure 4.15: Example 4.5 - 4 x 1 CPUs per SMP node - Non-overlapping execution

4.4.4 Optimal selection of m;s

Considering the minimization of the makespan

Let us consider (as in Example 4.3) a rectangular tile space J°: V5 € J° it holds 0 < j& < u?,
0 <i < n. We apply grouping transformation, according to formula (4.5). Similarly to formula

(4.3), it can be proven that the makespan of the execution will be

n S
w
o => wi+ Y [-E]- 4,
overlap Wy, + / [mk—l 2n +2 ( 6)
k=1 ki
where wj =uj +1,7=1,...,n is the width of the tile space along dimension 7.

In order to minimize the total completion time, we should apparently choose the i-th dimen-
sion, along which we allocate the tiles to the same CPU, so that it holds wf > w,f, Vk=1,...,n,
as wy is the only dimension of J° which is involved in (4.6) only once.

After the selection of the i-th dimension, the ceiling functions involved in the expression
(4.6) can be eliminated as follows:

S k S k
Zwk +Zm7k—2n+2§ poyerlap<zwk +Zm7k‘_n+1
k=1 k#1 k=1 k#i

Thus, we can assert that the completion time of the algorithm is approximately minimum when
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Table 4.6: Example 4.5 - 4 x 1 CPUs per SMP node - Non-overlapping execution
Time node (0,0)
Step | CPUO CPU1 CPU2 CPU33 ‘

o
—
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ke
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b)) [4)
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L))
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Time node (1,0)
Step | CPFUO CPU1 CPU2 CPU 3 | group

() (1)
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S
the expression ) % is minimized. According to Lemma C.3, this condition is valid when
ki
1
m n—1
mk:w,‘j S S 3 Jk=1,...,n,k#1 (4.7)
Wy WP WPy Wy

Of course, it is not always feasible because the numbers m; should be natural. But it always
applies an approximate criterion for the selection of parameters my. Intuitively, it means that

S
. wr. .
parameters mj should be chosen so that ratios m—’; are as close to each other as possible.

Example 4.7: Let us consider a cluster of SMP nodes with m = 4 CPUs each and a 3-

dimensional space J° with size 20 x 100 x 20. It means that wf = 20, wg = 100, w?? = 20.
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Figure 4.16: Example 4.6 - 2 x 2 CPUs per SMP node.

Neighboring tiles depicted using dots of the same color are assigned to the same SMP node.

Then, according to our previous analysis, the best choice will be: ¢ = 2, m; = 20 <2();1720> - 2,

mg = ot = 2. If we apply these values in expression (4.6), we get that the number of steps

required for the completion of the execution will be §pyei0p = 156. In contrast, if we chose
my = 4, mg = 1, then the expression (4.6) would get the value §yy¢piap = 161 > 156.
If the size of J° is 20 x 120 x 150 (w} = 20, wy = 120, w§ = 150), then, according to
1

our previous analysis, the best choice will be: 7 = 3, m; = 20 (ﬁ) > — 0.816. The closest
m

natural number which divides m = 4 is m; = 1. Thus mo = o =4 If we apply these values in
the expression (4.6), we get that the number of steps required for the completion of the execution
will be §gperiap = 336. In contrast, if we chose m; = mg = 2, then the expression (4.6) would

get the value pomlap = 356 > 336.

When the non-overlapping execution policy is followed, as deduced from formula (4.4), the
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Figure 4.17: Example 4.6 - 2 x 2 CPUs per SMP node.

Each sub-figure depicts the tiles assigned to an SMP node. Tiles across a grey plane, are executed
simultaneously by different CPUs of the SMP node.

selection of parameters my does no matter for the computation of the makespan.

Considering the minimization of the communication overhead

As one can easily observe in Example 4.7, when the overlapping execution policy is followed,
the significance of the selection of parameters my, as it has just been described, is less when the
ZS is much longer than dimensions wls, . 7wz$—17 wisﬂ, cee w;?. So, it may

be preferable to choose the values of parameters my taking into consideration the minimization

maximum dimension w

of the communication requirements among the SMP nodes. This need is apparent when com-
munication is not overlapped with computations. In that case, the less the communication load
is, the faster the execution is completed.

K
l2 1,

Figure 4.18: Communication load of a tile.

Communication load along dimension x is defined to be the number of dependence vectors, which
cross the respective tile boundary line (or, generally, for n dimensions, hyperplane).
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Table 4.7: Example 4.6 - 2 x 2 CPUs per SMP node - Overlapping execution

Unlike Examples 4.4 and 4.5, in this example we should label CPUs of an SMP node using both
dimensions of the 2 x 2 virtual mesh.

Time node (0,0)
Step | CPU (0,0) CPU (0,1) CPU (1,0) CPU (1,1) |
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Let us represent with [, the communication load of a tile along the k-th dimension, as
indicated in Figure 4.18. If we group together mims tiles, then the communication loads among
the SMP nodes will be [ymo = mﬂlll and lomq = n%lg, as indicated in Figure 4.19. Similarly,
if we group together mq ---m;_1mjy1---m, tiles, then the communication loads among the
nodes of the cluster will be 2 lk Thus the total communication load of a group will be liotq; =

m (l—l foeep izt g b li) According to Lemma C.3, it is minimized when my =

mi mi—1 mi+1 mn

Iy ($)ﬁ k=1,...,n, k # i. Of course, as numbers my should be natural, this

lilimalipa-ln
criterion is also approximative.
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Table 4.8: Example 4.6 - 2 x 2 CPUs per SMP node - Non-overlapping execution
Time node (0,0)
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In the rest of this chapter, we shall theoretically and experimentally compare the proposed
methods with each other. Although our above theoretical results can be applied to any convex
tile space, as explained in §2.2, we shall go on using only rectangular tile spaces, as in our
previous examples. We consider that this simplification is convenient for clearly expressing
some ideas and it does not constrain any of the advantages or disadvantages of the proposed

methods.
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Figure 4.19: Communication load of a group.

Communication load along dimension z is defined to be the product of the communication load
of a tile along dimension z, and the number of tiles, which touch the respective group boundary
line (or, generally, for n dimensions, hyperplane).

4.5 Theoretical Comparison

In this section we shall compare vertical grouping, which is indicated in Figure 4.3, with the
proposed scheme of hyperplane grouping, which is shown in Figures 4.4 and 4.8, in the case of

a 2-dimensional algorithm and a cluster of SMPs with 2 CPUs each.
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Figure 4.20: In order to execute at the same time tiles grouped together by a vertical
grouping scheme, we should further divide them into sub-tiles and execute some of them in
parallel, according to an intra-tile hyperplane scheduling.

As we have already mentioned, vertical grouping cannot exploit the computational power
of both CPUs of our SMPs unless we split each tile into smaller subtiles and compute some
of them in parallel, as shown in Figure 4.20. Let us assume that a CPU needs time « for the

computation of a tile with dimensions =, y (Figure 4.20a). Consequently, it will need time

for the computation of a respective subtile with dimensions &, y (Figure 4.20c). The subtiles
which are created can be computed by 2 CPUs in N + 1 computational steps, interleaved with
N synchronization steps, following an optimal linear time schedule (1, 1) as in Figure 4.20c. If

the average time consumed for the synchronization of 2 CPUs of an SMP node is tsypnch_in, then
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the total time required for the computation of a pair of initial tiles is

N+1
B=a + Ntsynch,in- (48)
(G is minimized when
N= | % (4.9)
tsynch,in

Therefore, the minimum value of 3 is Byin = a + 2\/atsynchin > a.

If we consider an iteration space of size X x Y, tiled with rectangular tiles of size xy, (for

example in Figures 4.3, 4.4 we have % = 10,% = 6), then we have the following options:

1. Following the non-overlapping scheme (which can be implemented using blocking calls)
in combination with vertical grouping, the number of time steps required for the comple-
tion of the execution is § = % + % — 1. The minimum duration of a time step (according
to formula (2.10)) iS Bynin + teomm, where teomm is the time required for the communication
between two SMP nodes. Thus, the total time required is

X Y

Tblock’ing,vertical = p(ﬁmm + tcomm) = ( + ?y)(ﬁmm + tcomm)

X

2. Following the overlapping scheme (which can be implemented using non-blocking calls) in
combination with vertical grouping, the number of time steps required for the completion
of the execution is §= % + % — 2. According to formula (2.11), if we set tcomp = Bmins
the minimum duration of a time step is tstart_dma +Max(Bmin, teomm dma) + tsynchro- Thus,

the total time required is

Tnonfblocking,'uertical - p(tstart,dma + maw(ﬂminv tcomm,dma) + tsynchro) x>~

= (% + %)(tstart,dma + max(ﬁmina tcomm,dma) + tsynchro)

If ﬂmm > 751:07717’de771(17 then

+ )(tstart,dma + /Bmm + tsynchro)

Tnonfblocking,vertical = (

ik
= [

3. Following the overlapping scheme in combination with hyperplane grouping, the num-
ber of time steps required for the completion of the execution is £= % + % — 2. Ac-

cording to formula (2.11), if we set t.omp = <, the minimum duration of a time step is
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tstartdma + MAx(Q, teomm_dma) + tsynchro- Thus, the total time required is

Tnon—blocking,hyperplane = p(tstart,dma + maa:(a, tcomm,dm(z) + tsynchro) ~

= (% + %)(tstart,dma + max(a, tcomm,dma) + tsynchro)

Ifa> Leomm_dma> then

X 3y
Tnonfblocking,hyperplane =~ (; + Z)(tstart,dma +a+ tsynchro)

In most real problems it holds that % = A < 1. Therefore, in case that G, >

teomm, the overlapping scheme in combination with vertical grouping is more efficient than
Y

the non—overlapping scheme, when tcomm_dma > (tstart,dma + Bmin + tsynchro)giriyl < teomm >
T 2y

%(tsmrtfdma + Bmin + tsynchro)- In addition, the overlapping scheme, in combination with hyper-

plane grouping, is more efficient than the overlapping scheme, in combination with vertical group-

ing: when (% + %) (tstart,dma +o+ tsynchro) < (% + %) (tstart,dma +a+2 vV atsynch,in + tsynchTo) CIf
. [toynch.i 2

we consider tgart_dma + Lsynchro <K @, then, we get 2 t“‘””;’“m > f‘%\ ~ % = tsynch.in > « (%) )

This is due to the fact that, using vertical grouping, the pipeline filling is faster, while, using

hyperplane grouping, the pipeline throughput is faster. So, hyperplane grouping is preferable
when the mapping dimension of the tile space is long enough in comparison to the rest dimen-
sions. However, in any case, the hyperplane grouping has the advantage that it needs no extra
tiling inside each tile in order to exploit the computational force of the CPUs.

Consequently, which communication and grouping policy is optimal, depends on the hard-
ware characteristics. One should estimate the time parameters involved in the model (compu-
tation, transfer initialization overhead, actual transfer overhead) and determine which scheme
is going to give the peak performance. In general, the purpose of the overlapping scheme, in
combination with hyperplane grouping, is exploiting all modern architectural characteristics of
NICs, such as DMA, RDMA, Zero Copy, or even NICs with embedded processors. Thus, this

scheme will be optimal when these characteristics are actually available.

4.6 Experimental Verification

4.6.1 Experimental platform and algorithm

In [STKO02], the pipelined schedule proposed in [GSK01] was applied, using a cluster of single
CPU nodes with PCI-SCI NICs. In this thesis, as in [ASTT05], [ASTK02a], [ASTKO02b], in
order to evaluate the proposed methods, we ran our experiments on a Linux SMP cluster with 8
identical nodes. Each node had 128MB of RAM and 2 Pentium I1T 800 MHz CPUs. The cluster
nodes were interconnected with an SCI ring, using SCT Dolphin’s PCI-SCI D330 cards. SCI
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NICs support shared memory programming, either through PIO (Programmed-I0) messaging,
or through DMA. We are using their kernel-level DMA support for messaging. Invoking kernel
system calls, causes extra CPU cycles overhead. However, we can avoid extra copying from user
space to kernel space (physical memory) when using DMA. We allocate user level pages, which
correspond to physically contiguous pre-reserved memory regions, for DMA communications.
Our test application was the following code:
for(i=1; i<=X; i++)
for(j=1; j<=Y; j++)
for(k=1; k<=Z; k++)
A[i]1[j1[k]=func(A[i-11[j1[k],A[il[j-11[k],A[i][j1[k-11);
where A is an array of X X Y x Z floats and X =Y << Z. Without lack of generality, we
select as a tile a rectangle with 75, ¢k and jk sides. The dimension k is the largest one, so all
tiles along k-axis are mapped onto the same processor, as proposed in §4.4.4. Each tile has i, j
dimensions equal to x and the tile’s “height” along k-axis equal to z. There are % tiles along

22, and since

dimensions ¢ and j and % tiles along dimension k. Tile’s volume is equal to g = =
the number of available processors is initially known, the only unknown parameter is z.

We applied both vertical and hyperplane grouping, using both blocking and non-blocking
communication primitives. Since both vertical and hyperplane grouping can be combined with
both overlapping and non-overlapping communication, we experimented with all four combina-
tions. For each exemplary iteration space and each possible tile height, we calculated the total
execution time for the above schemes. In order to implement these schemes, we used Linux
POSIX threads with semaphores for the synchronization among the processors of an SMP node

and the SISCI driver and libraries for the communication among the SMP nodes.

4.6.2 Tuning Parameters

First of all, as far as the implementation of vertical grouping is concerned, we experimentally
verified formula (4.9), in order to calculate the optimal execution time for a couple of tiles by
an SMP node. We assigned the computation of two tiles to the two processors of an SMP node
and measured their execution time in respect to the number of subtiles into which each tile was
cut, in order not to violate the iteration dependences. The experimental results, along with the
theoretically expected curve, are plotted in Figure 4.21. The theoretical plot was calculated using
the formula (4.8) with o ~ 69msec and tgynehin ~ 11pusec. These values were experimentally
measured by running a simple code fragment thousands of times and calculating the average
execution time. If we find the Npegt theoretical; that is the point N where the theoretical minimum
is achieved and for this IV we find the corresponding experimental overall time, then the difference
between this value and the experimental minimum is less than 0,15%. This is clearly shown in

Figure 4.22, which has zoomed in the minimum of the diagram of Figure 4.21. So we can safely

use Nbest,theoretical as Nbest-
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This can be simply justified as follows: If we consider a shift §N of N, then the shift of

6 will be 65 = —a% + tsynch indN. If, in this formula, we set N = Npest theoretical We
( SN ' )2
get that: -2 Noest, theoretical 1 Therefore, the less the parameter tgynehn in is in

/Brnin - 1+ ON 2+\/ a

Nbest,theoretical tsynch,’in
comparison to «, the less important the exact selection of N is. Intuitively, in the extreme case,

where tgyncnin 15 0, we could always achieve the same results, no matter how fine grained the
parallelism is (i.e. for very large N’s). However, tsy,ch in is always considerable and cannot be

ignored for real life SMP architectures.
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4.6.3 Experimental Results

Once vertical grouping had been implemented and approximated with a theoretical formula, we

implemented both blocking and non-blocking communication schemes. As far as the blocking
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Table 4.9: Implementation of the non-overlapping scheme

[ Thread 0:

[ Thread 1:

foreach group assigned to node(i,j) do{
receive from node(i-1,j)
receive from node(i,j-1)

foreach group assigned to node(i,j) do{

receive from node(i,j-1)

compute_tile(i,j,k,CPUO)

compute_tile(i,j,k,CPU1)

send to node(i,j+1)

send to node(i+1,j)
send to node(i,j+1)

semaphore_post (sem_s1)
semaphore_wait (sem_s2)

semaphore_post(sem_s2)
semaphore_wait(sem_s1)

Table 4.10: Implementation of the overlapping scheme

[ Thread 0:

[ Thread 1:

Explanation

foreach group assigned to node(i,j) do{
trigger_interrupt to node(i-1,j)
trigger_interrupt to node(i,j-1)

wait_interrupt from node(i,j+1)

send_dma(node(i,j+1),data)

foreach group assigned to node(i,j) do{

trigger_interrupt to node(i,j-1)
wait_interrupt from node(i+1,j)
wait_interrupt from node(i,j+1)
send_dma(node(i+1,j) ,data)
send_dma(node(i, j+1),data)

Inform “previous” nodes:
“I am ready to accept data”
Wait until “next” nodes
are ready to accept data
Initialization of DMA transfer
to neighboring nodes

compute_tile(i,j,k,CPUO)

compute_tile(i,j,k,CPU1)

wait_dma()

trigger_interrupt to node(i,j+1)
wait_interrupt from node(i-1,j)
wait_interrupt from node(i,j-1)

wait_dma()
wait_dma()
trigger_interrupt to node(i+1,j)
trigger_interrupt to node(i,j+1)

wait_interrupt from node(i,j-1)

Wait for DMA to complete

Inform “next” nodes:
“Your data has arrived”
Wait until “previous” nodes
have finished sending data

semaphore_post (sem_s1)
semaphore_wait (sem_s2)

semaphore_post(sem_s2)
semaphore_wait(sem_s1)

Implementation of a barrier

Table 4.11: Implementation of the vertical vs. hyperplane grouping

Vertical grouping

compute_tile(i,j,k, CPUO):

compute_tile(i,j,k, CPU1):

semaphore_post(seml)
semaphore_wait(sem2)

foreach subtile of this tile do{
compute each iteration of this subtile

semaphore_post (sem2)
semaphore_wait(seml)

}

foreach subtile of this tile dof{

compute each iteration of this subtile

Hyperplane grouping

compute_tile(i,j,k, CPUO):

compute_tile(i,j,k, CPU1):

compute each iteration of this tile

compute each iteration of this tile

communication scheme is concerned, it was implemented using the pseudo-code of Table 4.9. On
the other hand, the non-blocking scheme was implemented using the pseudo-code of Table 4.10.
Notice that during each time step every SMP node in the ij plane with coordinates (7, j) receives
from neighboring nodes (i — 1, ) and (i,j — 1), computes and sends to nodes (i + 1, 7),(4,5 + 1)
(Figure 4.23). Since the send_dma() call is not blocking, the computation of the tiles will be
performed concurrently with the transferring of data among the SMP nodes. After the execution
of wait_dma(), it is assured that both computation and communication are already completed.

The implementation of vertical and hyperplane grouping was achieved by a proper proce-
dure compute tile(i, j, k, CPUx). In order to implement vertical grouping, we used the
pseudocode of Table 4.11. The number of subtiles inside a tile was selected according to formula

(4.9). Notice that, the implementation of hyperplane grouping was much simpler, as shown in
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Table 4.11.
(ij+1)  (ij+1)
CPUO CPU 1
(-1.j) (i+1.)
j SMP node(i,))

(O R ()

Figure 4.23: Directions and source/destination nodes of message exchanges for an SMP
node with 2 CPUs
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Figure 4.24: Experimental Results: 16 x 16 x 1024k iteration space

The problem was solved using various values of X =Y and Z. For each schedule, we are
interested in the overall minimum execution time achieved at an optimally selected tile height
(see [GSKO1], [STK02], [HS98]). The experimental results, shown in Figures 4.24-4.28, illustrate
that, in every case, non-blocking communication is preferable to blocking communication and
hyperplane grouping is preferable to vertical grouping. The lowest minimum is clearly achieved
when using hyperplane grouping, in combination with non-blocking communication, in all cases.
As far as hyperplane grouping, in combination with non-blocking communication, is concerned,
according to our scheduling theory (formula (4.6)), the number of time steps required for the
completion of an experiment is §(z,y,z) = % + % + % — 4. The minimum duration of a
time step, as mentioned in §4.5, is (fstart_dma + tecomp + tsynchro)- Thus, Thon_biocking, hyperplane =
(% + % + % —4) (tstart_dma + teomp +tsynchro)- This formula was used to produce the theoretical
curves of Figures 4.24-4.26 with values ts4rt dma + tsynchro = 100psec and teomp = xQZtcompl,
where t.omp1 is the execution time of a single iteration and it was measured equal to 39, 6nsec.

One can easily verify from Figures 4.24-4.28 that the graphs of the theoretical model are very
close to the corresponding experimental graphs, not only at the desired minimum, but along the

whole graph. Thus, the theoretical model of scheduling is strongly verified by the experimental
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Figure 4.25: Experimental Results: 24 x 24 x 1024k iteration space
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Figure 4.26: Experimental Results: 32 x 32 x 1024k iteration space

results.

4.6.4 Scalability Issues

The theoretical model presented in this chapter is general enough, so as not to be differentiated
when scaling up the underlying hardware architecture. However, in this section, we shall examine
some practical problems, which may rise.

For example, if we add more SMP nodes, the initial iteration space may be cut into smaller

. . . . . . t
tiles. Thus, the computation to communication ratio of each tile ;—***— may reduce because

comm_dma

of two reasons:

1. Less computations are assigned to each SMP node, while the amount of data transfer

required is not proportionally reduced.

2. If the network is saturated (by more SMP nodes trying to send more data in more messages
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Figure 4.27: Experimental Results: 32 x 32 x 512 iteration space
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Figure 4.28: Experimental Results: 48 x 48 x 512 iteration space

to each other), the increase in tcomm_dma Will be more than relative to the increase in the

volume of data transmitted.

However, considering an application with uniform dependences, as described in the algorithmic
model in §2.2, and a torus interconnection topology, such as the one used for our experiments,
the network will be never saturated due to the increase of SMP nodes. This is because each node
need to communicate only with its neighbors, thus there are no shared resources among different
communication channels. Thus, only the first reason mentioned above can potentially cause
some trouble when adding more SMP nodes. But, if it still holds tcomp > tcomm._dma, DOthing
will change in the implementation of our model. In the opposite case (tcomp < tecomm.dma), the
use of even more nodes will not be efficient. This problem will not concern our scheduling, but it
will mean that the communication architecture is too slow to exploit all the computation power
of the computing system. Then, it would be better not to use all the nodes available, as implied

in [HS98]. However, regarding the speed and efficiency of modern interconnection networks, like
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the SCI based interconnect, or the Myrinet interconnect used for the experimentation of this
thesis, it is not possible to encounter such a situation, especially when computing large iteration
spaces of real problems.

If we add more CPUs inside each SMP node, we may again cut the initial iteration space into

tco’mp

smaller tiles. The computation to communication ratio of each tile ; will be decreased

comm_dma
again, but only for one reason: Less computations are assigned to each CPU. In particular,

twi‘f% will be conversely proportional to the number of CPUs inside each SMP node. In this
case, no more data need to be sent through the interconnection network, since the additional
CPUs communicate with each other and with the preexisting CPUs through the shared memory
of the SMP node. However, tsynchro and tetart ama Will slightly increase, because, first, more CPUs
need to initialize their DMA sends and receives and, second, these operations can not be executed
at the same time by different threads of the same node (no thread-safe environment — see the
implementation code of Table 4.10). This problem can be solved by assigning all communication
overhead to one thread only and at the same time reducing the computation overhead of this
thread. Following that technique, CPUs do not remain idle waiting to synchronize with each
other, since the amount of computations assigned to the communicating thread may be properly
calculated, so as the total communication+computation overhead to be evenly distributed among
the CPUs of each node. The exact solution of this problem concerns the research conducted by
Nikolaos Drosinos in Computing Systems Laboratory.

Another aspect of scalability (concerning the scheduling algorithm, not the hardware) is
having so large iteration spaces that we cannot cut them into so few tiles. That is, applying
a tile selection technique, such as the ones presented in [BDRR94], [Xue97a], [Xue00], [RR04],
[KRC99], [LRWI1], [WL91a], [PHP03], [MHCF98], we may get more rows of tiles than the CPUs

available. Then we should apply a more complicated technique for assigning tiles to SMP nodes
and CPUs as described in [AKKO04] and in Chapter 5 of this thesis.
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Scheduling onto a fixed number of

homogeneous SMP nodes

In this chapter, we assume that the number of SMP nodes of the available cluster may
be less than the number of SMP nodes needed for the application of a time scheduling
produced by the techniques proposed in Chapter 4. Thus, we need to allocate more
than one of the tasks produced to each CPU. Which of them will be assigned to the
same CPU? This chapter answers the above question by proposing five alternative
schedules. Fach one seems to be preferable for a specific form of tile spaces or for a

set of architectural characteristics.
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5.1 Introduction

The schedule proposed in Chapter 4 assumes the availability of an unlimited number of SMP
nodes or that the tile size has been selected so as the SMP nodes required do not exceed the
available SMP nodes. However, it cannot be always true, since the tile size is often selected so
as to minimize communication load [BDRR94], [Xue97al, [Xue00], [RR04], or to achieve locality
in memory data references [KRC99], [LRW91], [WL91a], [PHP03], [MHCF98]. In [AKPTO00]
Andronikos et al. have proposed an assignment scheme onto a fixed number of nodes. It might
be generalized, for assigning tiles onto a fixed number of nodes, however the complexity of
evaluating which tiles should be assigned to which node is too high. Such an allocation scheme
may be optimal, but it will be impractical if we want to incorporate it into an automatic code
generation tool [GDAKO02a]. On the other hand, automatic code generation without taking care

of processor allocation and scheduling has certain drawbacks:

1. A lot of precesses are generated, which are not actually needed, since they may outnumber
the processors available. As a result, the processes generation time may unnecessarily be
comparable to the processes execution time, as we found out during our experimentation
in [GDAKO02a].

2. In addition, we are obliged to have confidence in the operating system to schedule processes.
For example, MPI automatically allocates processes to processors cyclically, which may be

far from optimal.

3. Finally, in case more than one processes are allocated to a CPU, optimizing tile size
and shape according to cache locality criteria [KRC99], [LRW91], [WL91a], [PHPO03],
[MHCF98], will not have the desired results, as context-switching frequently between them

might not allow them to build sufficient context in the cache.

For this purpose, a regular, periodic allocation scheme is needed, even if it is suboptimal. In
[BDRV99], [CDRI7] Boulet et al. and Calland et al. have theoretically proven the optimality
of a cyclic assignment of 2-dimensional tiles onto a fixed number of single CPU nodes. On the
other hand, Manjikian and Abdelrahman have presented in [MAOQ1] an alternative method for
scheduling tiled iteration spaces onto a fixed number of SMP nodes, without taking into account
that there is no need for communication among CPUs of the same SMP node, since the data
required are located in the node’s shared memory.

In this chapter, we propose some methods for scheduling tiled iteration spaces onto an
existing cluster with a fixed number of SMP nodes. All following formulas, which refer to
the allocation of tiles or groups to the nodes of the cluster or to the corresponding execution
steps are valid for any convex tile space, as defined in §2.2. However, when calculating the
number of time steps required for the completion of the execution (makespan), we consider a

rectangular tile space, as in formulas (4.3), (4.4), (4.6). We use this simplification in order
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to point out the basic concepts concerning each one of the proposed methods, without too
complicated mathematical formulas. Anyway, it does not constrain any of the advantages or
disadvantages of the methods proposed, apart from those concerning load balancing. In order
to further simplify the mathematical formulas, we assume that the longest dimension of the tile
space is the first one. Thus, according to §3.3.2, §4.4.4, tiles along the first dimension will be
assigned to the same processor. This assumption can be easily cancelled by simply interchanging

the first dimension with anyone else.

5.2 Cyclic assignment to SMPs

In [BDRV99], [CDRI7] the optimality of the cyclic assignment of 2-dimensional tiles onto a fixed
number of processors was theoretically proven. However, the calculations in [BDRV99], [CDR97]
did not take into account the communication overhead involved. Generalizing this approach for
n-dimensional tiles and for clusters of SMP nodes, we consider that the available SMP nodes
form a virtual (n— 1)-dimensional mesh of pg X - - - X p,, = p SMP nodes. We cyclically assign the
groups to the SMP nodes. That is, we assign group 5% to the SMP node (55 %p2, ..., 1S %pn),
as indicated in Figure 5.1.

allocation of tiles to SMPs assuming
as many nodes as needed

Y SO
r REERREEY o
e RSS2 e

This chunk of tiles will be assigned on
the 2 existing SMPs & executed after
the first chunk execution finishes

iS
17

\\\\\\\\\\\\ﬂl R\\\\\\\\\\\\\ [ crum

. %\\\\\\\\\\\\\ \_coun S \\\\\\\\\\\\N‘f\\\\\\\\\\\\\w crue
M

S
chunk origins

time scheduling on 2
SMP nodes
Figure 5.1: Cyclic assignment to SMP nodes.

Groups are cyclically assigned to SMP nodes. Equivalently, tiles are cyclically assigned to CPUs.
Tile space areas, which can fit the existing architecture, are named as “chunks”. Chunks of tiles
are executed one after the other, in lexicographic order.

Theorem 5.1 The makespan of cyclically assigning a rectangular tile space to SMP nodes,



128 Scheduling onto a fixed number of homogeneous SMP nodes

pcyclicfoverlap - 22 (,w;S' - 1>%mzpz + ([71 —1 %pz] H mzpl-‘ —
=2 =2 (51)
< 3 [(mi+ 1pi] =20 + 2+ wf H(mpj
=2

S S
Proof: Each SMP node will execute [ 2= x -+ x [=2~] rows of groups. If the rows of

groups assigned to an SMP node, are executed in lezicographic order, row (e, 55, ..., §&) will

n G n s
be executed in SMP node (j$%psa, ..., 75 %pn) after > [ij I1 (mizk]] rows, imposing
i=2 fk=ir1 "

k=i+1
time steps. In addition, as deduced from Figure 5.1, the location of a group, relatively to the

” S
a latency of wy time steps each. Thus, there is a total latency of wy Z lL -1 1 f#’;ﬂ

n
corresponding chunk origin, is (jf;/,jg%pg, oo, 58%pn), where jlcl = g7+ > 52 %mp;.
i=2
Therefore, if the underlying architecture allows for concurrent execution of computations
and commaunication, following the overlapping execution scheme, group j& will be computed

during the time step

n n S
2 ey . jl w
(%) =45+ i %pi + w? E [ [] mkfokﬂ' (5.2)
i=2 Di

k=i+1

Thus, the number of time steps required for the completion of the execution will be

pcyclicfoverlap = maXt(j ) mlnt( ) +1=

Dt 4 3 [+ 125 %0+ wf 3 [%J [T ]| +1=
(@4 é [(wf — 1)%mip; + ([5= 1 - 1)%101} +wy +uy é (T 11 D :ﬁ (mkmﬂ N

k
(&N 2": [(UJZS = 1)%mip; + (H:ﬁ B 1)%1%} o 1;[ [ lpj

=2

The first term of the right-hand part in formula (5.1) represents the time required for filling
the pipeline (that is, the initial idle time needed for the last processor to start computing), while

the second term corresponds to the time each processor is busy executing calculations.

Lemma 5.1 This schedule is valid iff

n S
w
wi [ I=21= (i + D,
keit1 |kPE

vl

2,...,n such that wf > myp;.
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Proof: In order to prove the validity of this schedule, it suffices to prove that the data needed
for the computation of a tile are available during the desired time step. If the necessary data
are available for the computation of the chunk origins, they will be also available for every
inner tile. We assume that tiles are big enough to include all dependence vectors. Thus,
each tile depends only on neighboring tiles. A chunk origin has coordinates of the form.:

jéorigm = (0, zamapa, ..., TpMpDy), where x; € N (i =2,...,n). Thus, it will be executed in

the SMP node (0, ...,0) during the time step torigin = W7 Z Z; H f
=2 k=i+

mwﬂ (see formula

(5.2)). If z; > 1 (which presupposes wy > myp;), this chunk origin wzll be dependent from tile

35 dependence = (0, Tamapa, ..., amy_1pi—1, Tynupy — 1, i 1My apig 1, - - TnMnpn), which
will be executed in fhP SMP node (O ,0 pl 1,0,...,0) during the time step tgependence =
(mi+1)p1—2+w? [122[ k:1:[+1fmkpkﬂ H fmu;’;k 1]. Since these two tiles will be executed in
different SMP nodes, for the necessary data to be available, it must hold torigin —tdependence >

" S

2 & w [ (#’;k] > (my + 1)p;. This inequality should be valid VI = 2,...,n such that
k=l+1 0F

wZS > mypy. -

If the condition, defined by Lemma 5.1, is not valid, then there is not an actual shortage of
processors along dimension [. Thus, we can schedule along this dimension as if there were as

many processors as needed. For example, see the difference between Figures 5.2 and 5.3.
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scheduling on a fixed number of processors

Figure 5.2: Cyclic scheduling when there is not actual lack of processors.

When there are only 2 SMP nodes available, the time steps, when each tile will be computed,
do not change at all.

If we should do with a conventional communication architecture as node interconnect (i.e.

without NIC support for relieving the CPU from the communication burden):
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Figure 5.3: Cyclic scheduling when there is lack of processors.

The computation of the second chunk of tiles starts at time step ¢ = 8, instead of ¢t = 6, according
to formula (5.2).

Theorem 5.2 The makespan of cyclically assigning a rectangular tile space to SMP nodes,

following the non-overlapping execution scheme, is:

n S
pcyclic—nonoverlap = Z [(w )%mlpl] + wig H [m p1—| é
=2 =2
(5.3)
< Zmzpz—n+1+wi9 H[mpﬂ

=2

Proof: As in the proof of theorem 5.1, the latency before the computation of a group consists
of the latency imposed by lexicographically previous rows assigned to the same processor, plus
the latency imposed by previous groups of the same row. Consequently, group j_é will be
computed during the time step

n

o ’LUS
t(j%) = Zl o II 1=+ 1] (5.4)

m
keit1 kPk
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Thus, the makespan of the execution will be

pcyclzc nonoverlap — maXt( G) mmt(] ) +1=

‘@ uf + Z [ S%mzpz + wy ml H [Wzikl;)k] +1=
=2 L =i+1
(C4) & n n wS
= 22 [(wf — 1)%mip;] +wf + w? 22 ((Wﬂ -1 II 1[,,%’;% ] =
1= k=i+
€1 &
= 22[(111 1)%m;p;] + 1:[ WJ
_|
Lemma 5.2 The schedule of Theorem 5.2 is always valid, assuming wf > wf, 1=2,...,n.

Proof:  As in the proof of Lemma 5.1, in order for this schedule to be valid, the data
needed for the computation of a tile should be available during the corresponding time step.

A chunk origin jgorigin = (0, z9mapa, ..., TpMpDy) (r; € N (i =2,...,n)), will be executed

during the time step torigin = wy E [xl H f wi 1 (see formula (5.4)). If x; > 1 (which

MEPk
=2 k=i+ kPk

PresSupposes wls > mypy), this chunk origin will be dependent from tile j_édepmde”ce = (0,

LMD, oy Ty 1M —1PI—1, TyuP; — L, 1My 1Dig1s - 5 TpMnPp), which will be executed

n n s n S )

during the time step taependence = mupi — 1+ wi[> [z [ o1l =TI [ 10 Since,
i=2  k=it1 PF k=l41 K

in the non-overlapping execution scheme, the data are transferred among SMPs during the

time step of their computation, for the necessary data to be available, it must hold torigin —

n S
taependence > 1 & wi T[] (#’;k} > myp;. This inequality is valid V1 = 2,...,n such that

k=I+1
L3 S
wy > mypy, because: wy ] [mi’;k} > wy > w > myp. -
k=111

5.3 Mirror assignment to SMPs

Let us consider another schedule, if we assign the tiles to SMP nodes as indicated in Figure 5.4.

That is, we assign group jé to the SMP node

( S %pa it even(j§ /p2) iS%p, it even(5S /py) )
(p2 = 1) = j§%p2 i 0dd(j§ [p2) * "7 (pn— 1) — 55 %py it odd(jS /pn)

This schedule has the advantage that there is no need for data transfer along the boundaries of

chunks of tiles, thus less time is wasted for communication.

Theorem 5.3 When following the mirror assignment schedule, in combination with the over-
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Figure 5.4: Mirror assignment to SMP nodes.

As in the cyclic assignment scheme, the tile space is divided into chunks, which fit the existing
processing architecture. The difference is that tiles along the same chunk boundary are assigned
to the same SMP node. Thus, there is no need for communication across chunk boundaries.

lapping execution scheme, the makespan is:

pmi7“7'07'—0'ma7"lap = é [(w;g - 1)%mipi + ((%—‘ - 1)%2711 é [(ml + 1)pi] +2n — 2+
+ [wf + fj [(m; + 1)p;] — 2n + 2} ﬁZ[n’;’pj < (5.5)
< [wf + znj [(m; + 1)p;] — 2n + 2] ﬁ [mlpj
=2 =2

Proof: As in the cyclic assignment schedule, if the chunks of groups are executed in lexico-

graphic order, the chunk containing row (e,jS,...,7S) will be executed after
n . n s
> (15 1T k|
im2 L Pl PR

chunks. The latency imposed by each of the previous chunks, is greater than the respective
one when applying the cyclic assignment schedule. It equals to wy + E [(m; + 1)p;] —2n+2,
=
since the computation of a whole chunk should be finished before the computatwn of the next
chunk starts. In addition, as deduced from Figure 5.4, the position of a group, relatively to
n

the corresponding chunk origin, is (jlcl,jza%pQ, oo, 59%pn), where le/ =37+ 3 52 %mp;.
i=2
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Therefore, group j_é will be computed during the time step

ZJZ Yopi +

w1+z m; + 1)p;] —2n + 2

Thus, the makespan will be

pmzw or— overlap = max t(J ) min t( +1=

)+
(0:3) uf' + 2 { S%mzpz ﬁJ%pz}

¥ [wf+ S [(ms + 1] —2n+2} ORI ]
=2 =2 k=i+1
CHLOD 5 [wd = 1)omaps + (1251 = 1)%pi] — 3 [y + )pi] + 20 — 2+
i=2 1=2
+ {wf + Xn: [(m; + 1)p;] — 2n + 2} ﬁ [,:Luj,ﬂ
=2 =2

Following this schedule, there is no need to prove that the data required will be available

during the computation of a tile, since,

1. the tiles of a chunk are dependent only on tiles of the same or of a lexicographically

previous chunk and,
2. there is no possibility to overlap the computations of different chunks.

If there is no shortage of processors (wls < myp;, Yi = 2,...,n), the proposed schedules are
equivalent. Otherwise, it can be easily deduced from formulas (5.1), (5.5) that & cycric—overiap
< @mi,.,.m._ave,.lap. Their difference is due to the fact that, following the mirror assignment
schedule, every time the computation of a chunk finishes and the computation of the next one
starts, there are some idle time steps for some of the processors, as indicated in Figure 5.4
by white dots. Thus, when a time step for the cyclic schedule is equal to a time step for the
mirror one, the cyclic schedule is preferable to the mirror one. In fact, this is the case for the

overlapping execution scheme.

Theorem 5.4 Following the mirror assignment schedule, in combination to the non-overlapping

execution scheme, the makespan of the execution is:

pmir?"m" nonoverlap —

= 3 [(w? - 1)%map] - %mzpz+n—1+{w1+22mzpz—n+1 s o

< [wl +Em¢pi—n—|—1} H[m;’iw
=2

=2
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n
Proof: The latency imposed by each one of the previous chunks is wy + > m;p; —n + 1.
i=2

. . n
Consequently, group j& will be computed during the time step t(j<) = lel—i— (w§+ > mip; —
i=2

. Thus, the makespan of the execution will be

ey [szjJ i

@mirrorfnonoverlap = maXt(jG) - mlnt(]G) + 1=

= uy + 22 [uf %omip;| + |wi + Z2mz'pi —n+1 22 Fred . I1 1fmk’;ﬂ
1= 1= Z+

1=

I

-
I|
)

n n n S
[(wf - 1)%mipi} > mipi+n—1+ [wf + > mipi —n+ 1] 11 f;l'i’pﬂ
i=2 i=2 i=2

It can be deduced from formulas (5.3), (5.6) that Peyciic—nonoveriap < Pmirror—nonoveriap-
(They are equivalent only in case there is no lack of processors.) However, since the communi-
cation overhead is not hidden under the computation time, this schedule may sometimes result
in a shorter total execution time, due to better exploitation of the available bandwidth. In
particular, if there are only two SMP nodes along a dimension, no SMP node should both send

and receive data along that dimension. Thus, the communication overhead will be halved.

5.4 Cluster assignment to SMPs

Alternatively, following the approach of [MAOQ1], generalizing it for n-dimensional spaces and
taking into account that there is no need for communication among processors of the same SMP

node, we may assign neighboring rows of tiles to the same CPU, as indicated in Figure 5.5.
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Figure 5.5: Cluster assignment to SMP nodes.

Neighboring tiles, clustered together to TILES, are assigned to the same CPU. Time scheduling
does not any more concern tiles or groups, but TILES or GROUPS.
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Theorem 5.5 When following the cluster assignment schedule, in combination to the overlap-

ping execution scheme, the makespan of the execution is:

n S n

w? ws
pcluster—overlap = H [ml;l-l wl —2n+2+ Z [ —| + Z [71SW (57)
=2 1=2 I— sz 1=2 mll—rn ’Lp 1

Proof: In order to achieve this schedule, we cluster together neighboring tiles (57,75, ..., 75),
.S .S
mapping them to a “supertile”, or TILE, labelled as (57, | —2—|,...,|—2x—). Thus, the

w 7US
m22132“ l—mnzn
corresponding GROUP will be j_é =G+ X | L], | j’-’ss | LLSJ) and
i=2 r llpl m2(7”21’2—‘ mnlrmnpn
it will be ezecuted during the time STEP t(j5) = j5 + ZL S J + Z[ |. Conse-
[ i=2 mﬁ—w

sz

quently, the MAKESPAN of the algorithm is

—»

pCLUSTER OVERLAP = maxt(j ) — mint(j ) +1=

C.4 w? L wS
(D 2n+2+2( ]
=2 (=5 ] i=2 mil -]

” S
As a TILE consists of ] fnll”lpw tiles, assuming that the duration of a time step is mainly
i=2

n

determined by the computation time toomyp, a STEP will be equivalent to ][

(excluding the DMA initialization and synchronization time). Thus, the total number of steps
required for the completion of the execution will be

S
wy ti
ime steps
mim] p

S

pclustar—overlap - H (WW p(LU%TER OVERLAP —
=2

= 115 <w1 24243 [ 1+if%1>

7 1=2 [W—I =2 ml(m

Lemma 5.3 It holds that pcyclic—m;erlap Spcluste’r—aveﬂap'
Proof:  When there is no lack of processors (wy < m;p;, Vi = 2,...,n), the proposed
schemes are equivalent and it can be easily proven from (5.1), (5.7) that

pcyclicfoverlap = pclustea"701)(»37"lap

Otherwise, (5.7) =

S
w:
p(:luste'r‘ overlap > Z -1 + [723 —1 + w1 H

o 1 ma g )

If we write wf = x;m;p; —Yi, where x;, y; are integer numbers and x; > 1, 0 < y; < m;p; —1,
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then it holds that:

(wj — 1)%m1pz =mp; —y; — 1 ;
r mf mipi — mipg |
mip,
w§ C.5) =
(’—m —I )%pz = Pi— I_:,/;LJ -1 (I s_| 1% ( wS 121
w? (C 5) i = (I — op; < — | -
m [ — vy —I -1 a Lm?i%J -1 " ml[%]

= pcyclic—overlap < pcluster—overla;r

Thus, this schedule results to a worse makespan than the cyclic one. Their difference is due
to the fact that, in this schedule, the filling of the pipeline is slower (that is, the last processor
starts executing computations later). In case wf >> wf (1 =2,...,n), the time each processor
is busy, outflanks the pipeline filing time and it holds that Peycic—overiap =~ Peiuster—overlap-
However, the previous mathematical lemma has not taken into consideration the time required
for the initialization of messages and for synchronization. Since the cluster assignment schedule
requires less messages to be sent and less synchronization, in some cases it may be practically

proven more efficient.

Theorem 5.6 Following the cluster assignment schedule, in combination to the non-overlapping

execution scheme, the makespan of the execution is:

pcluster—n(moverlap =C (wls ~I) <C <’LU15 —n+1+ Z mipi) (58)

i=2 [t i=2

Py

where 1 < C < H [ zpz—‘

Proof: Tile (j7,75,...,72), corresponding to GROUP

js Jn
G_] +Z ws Jva\_%J)

w
mLpL -‘ m2 [mzzpz ~| Mn |—mn;7n -|

is executed during the time STEP t(j_é) =i+ L%J Consequently, the MAKESPAN

of the execution is

(C.4)
w

pCLUSTER—NONOVERLAP = max t(js) - mint(jg') +1 =

=2 mzl[)z]

A computation subSTEP is equivalent to H[ | computation substeps, but a communi-

m; p

n S
cation subSTEP is equivalent to less than [] [ ---]
i=2

communication substeps. In particular,
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if the communication load is equal along all communication dimensions (as resulted by the

method pmposed mn [Xue9’7a]), the amount of data to be transferred, as indicated in Fig-

S
ure 5.6, is Hf ol Z —1 < Hf w -] times the communication load of a tile.
mipPi i=2 (n_l)l—mil’z]

Thus, the makespan of the algorithm will be

i=2

pclust(jr—n()n()q)erlap C@( 'LUSTER-NONOVERLAP (Where 1<0<L H [ 7p11) =

i=2

pcluszﬁer—nonoverlap - C <’U)1 —n+ 1 + Z ’V" “’z ‘ﬂ)

miPq

bbb
ooe. =

Figure 5.6: Clustering communication

In conclusion, comparing to the cyclic assignment schedule, this method has the drawback
of slower pipeline filling. However, it results to less communication overhead, which signifi-
cantly reduces the total execution time, especially when the non-overlapping execution scheme

is applied.

5.5 Retiling

A more efficient schedule can be obtained, if we adapt the size of tiles to the available number

of SMPs (Figure 5.7). That is, we retile the initial iteration space, so as to get wf/ = m;p;,

(it = 2,...,n) and wls Then, the size of a “new” tile will be equal to the

m p -
size of an “old” tile and, consequently7 a “new” computation step will be equivalent to an
“old” computation step. Following the overlapping execution scheme, the number of time steps

required for the completion of the execution, according to formula (4.3), will be @retile,overlap =

n S/ n wsl
Z:lwi —i—%(ﬁﬂ—%ﬁ—?#
i= i=

n

pretile—overlap = Z [(mz + 1)]9@] —2n+2+ wls H m; pz (59)
i=2 j
In case wls%mipi =0 (i =2,...,n), it holds that &, crite—overtap =5 cyctic—overiap- Otherwise,

Eretite—overiap < 8eyctic—overiap- Their difference is due to the fact that the cyclic schedule does

not assign exactly the same number of tiles to each processor, resulting to a slight load imbalance.
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Figure 5.7: Retiling.

The tile space is re-constructed from scratch, so as to fit the existing processing architecture.

Using the non-overlapping execution scheme, the number of time steps required for the
n

completion of the execution, according to formula (4.4), will be pretile—nonoverlap = Z wisl —

n+1=

pT’etzle nonoverlap — Z m;p; —n + 1+ wls H (510)

mpz

From (5.3), (5.10), we can deduce that §.ciiie—nonovertap <8cyctic—nonoveriap- In addition, a
“new” computation substep is equivalent to an “old” computation substep, but a “new” com-
munication substep is equivalent to less than an “old” communication substep. In particular,
as in Theorem 5.6, if the communication load is equal along all communication dimensions, the

n
amount of data to be transferred is ) L
i=2 (n—1)

< 1 times the communication load of an “old”

wk

m;pg

tile.

In conclusion, when the tile space is rectangular, this schedule is preferable to previously
proposed ones, assuming that there are no factors constraining the tile shape, such as false
sharing, or cache locality [KRC99], [LRW91], [WL91a], [MHCF98], [PHP03]. It can fully exploit
the computational power of all the SMP nodes and it achieves a perfect load balance, without
imposing any additional complexity to the initial schedule, at least when a rectangular tile space
is concerned. But if, apart from parallel scheduling, there are other factors constraining the tile
size and shape, this schedule may prove to be inefficient, since it totally reorganizes the execution

order of iterations.
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5.6 Experimental Results

5.6.1 Experimental Platform

In order to evaluate the proposed methods, we use a Linux SMP cluster with 2 identical nodes.
Each node has 1GB of RAM and 2 Pentium IIT @ 1266 MHz CPUs. The cluster nodes com-
municate through a Myrinet high performance interconnect, using the GM low level message
passing system.

In order to utilize the available processors in each SMP node as efficiently as possible, our
implementation uses one multi-threaded process per SMP, with the number of threads equal to
the number of CPUs. Multithreading support is based on the LinuxThreads library. Threads
executing on the same SMP communicate using shared memory, eliminating the need for message
passing. For the data exchange between processes executing on different SMPs, Myricom’s GM
version 1.6.3 is used [Myr02]. GM is a low-level message passing library for Myrinet. It comprises
a library used by userspace programs, an OS driver (in our case, a Linux kernel module) and
a Myrinet Control Program (MCP), which is executed on the LANai, the embedded RISC
microprocessor on the Myrinet NIC. The GM driver is used during the execution of a userspace
process to open and close ports and to allocate and free memory suitable for DMA transfers. A
port is a communication endpoint, used as the interface between a userspace process and the
NIC. Having opened a port, a process can communicate directly with the NIC, without the need
for system calls, bypassing the operating system. Thus, all data exchange is performed directly
to and from userspace buffers.

To provide flow control between the host and the NIC, sending and receiving messages is
regulated by tokens. Initially, a process possesses a finite number of send and receive tokens.
To be able to receive a message, the process must provide GM with a buffer in DMAable
memory, relinquishing a receive token. When a message is received, the DMA engine on the
Myrinet NIC places it directly into the userspace buffer. The process polls for new messages and
retrieves the receive token when a message arrives. The same applies to sending messages: The
process relinquishes a send token by requesting the transmission of a message from a userspace
buffer, then retrieves it when the send operation completes and an appropriate send completion
callback function is executed by GM. As the data exchange between the host memory and the
NIC is undertaken by the DMA engine on the NIC, without involving the CPU, overlapping of

communication with computation is possible.

5.6.2 Experimental Data: Rectangular Tile Spaces

We performed several series of experiments in order to evaluate and compare the practical
speedups obtained using each one of the four alternative schedules, combined with both the

alternative execution schemes. Our test application code was the following;:
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for(i=1; i<=X; i++)
for(j=1; j<=Y; j++)
for(k=1; k<=Z; k++)
ATi][j] [k]=func(A[i-11[j]1[k],A[i][j-11[k],A[i1[5] [k-11);

where A is an array of X x Y x Z floats and X =Y << Z. Without lack of generality, we
consider, as a tile, a rectangle with 77, ik and jk sides. The dimension k is the largest one, so all
tiles along the k-axis are mapped onto the same processor, as proposed in [AKPT99], [GSKO01].
Fach tile has ¢, j, k dimensions equal to . Thus, there are % tiles along dimensions ¢, 7 and
% tiles along dimension k. Tile’s volume is equal to g = 23. As described in [HS98], g has
been selected, so that teomp = teomm, after experimentally measuring the computation time per
iteration, the time required per data item to be transferred and the communication initialization
and finalization overhead.

After implementing all four schedules in combination with both execution schemes, as de-
scribed by the pseudo-code of Tables 5.1, 5.2, we measured the performance of all schedules
and compared it with their theoretically expected performance. For various tile sizes, we have
conducted a series of experiments for each schedule4execution scheme combination, varying the
iteration space size. In Figures 5.8-5.10 we have plotted our experimental results along with
the respective theoretical curves. As a measure of performance, we have used the ratio of the
speedup obtained to the best possible speedup. That is, we have depicted the ratio of the
speedup obtained to the number of processors used. Thus, the closer a plot is to 1, the more
efficient a schedule is. As can be seen in Figures 5.8-5.10, the practical completion times of our
experiments differ to our theoretical predictions by at most 3%. For the overlapping communi-
cation schedules, this can be attributed to both the DMA engine on the Myrinet NIC and the
CPU trying to access data in memory.
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1.2 1.2 T T

T T T
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Figure 5.8: Experimental Data: Tile Size 32 x 32 x 32

One can easily deduce that in almost all cases, the retiling schedule achieves the best per-
formance, both theoretically and experimentally. This result was expected, since the retiling

schedule absolutely adjusts tiles to the existing configuration of a cluster. However, in our ex-
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Table 5.1: Implementation of schedules (cyclic assignment, mirror assignment, cluster
assignment to SMP nodes) when the tile space is rectangular

Cyclic Assignment - Rectangular Tile Space

FOREACH CPU with coordinates (cpu_ids,...,cpu_idy)
in SMP node with coordinates (smp-ida,...,smp_id,) DO
FOR (t2 = smp_ids * ma + cpuids; tz < w5 ; ta+ = ma % p2)
FOR (t3 = smp_ids * ms + cpu_ids; ts < wf; ts+ = ms3 * p3)
FOR (t; =0; t; <wi; t1 ++){

Execute pre-computation part of Communication

Execute Computation of tile (%¢1,%2,%3)
Execute post-computation part of Communication

}

Mirror Assignment - Rectangular Tile Space

FOREACH CPU with coordinates (cpu-ids,...,cpu_idy)
in SMP node with coordinates (smp_ida,...,smp_id,) DO
s
—0- w2 .
FOR (22 =0; 22 < ’—mQ*p2—|, Ig—‘r-l—){

to = x2 xma * p2 + (1 — 22%2) * (smp_ida * ma + cpu_ida) + (£2%2) * (M2 x p2 — 1 — smp_ids * ma — cpu_ida);
IF (ty < w5)
FOR (23 =0; 23 < [mls”fspal; z3 + +){
ts = x3 * m3 * ps + (1 — 23%2) * (smp_ids * m3 + cpu_ids) + (x3%2) * (m3 * ps — 1 — smp_ids * m3 — cpu_ids);
IF (t3 < w3){
Execute pre-computation part of Communication
Execute Computation of tile (t1,t2,t3)
Execute post-computation part of Communication

}

}

Cluster Assignment - Rectangular Tile Space

FOREACH CPU with coordinates (cpu-ida,...,cpu_idy)
in SMP node with coordinates (smp.ida,...,smp_id,) DO
FOR (t1 =0; t1 < wls; t1 ++){
Execute pre-computation part of Communication

S
FOR (t2 = (smp_ids * ma + cpu_ids) x [ —2—1;

Mmo*po

’UJS
to < min(ws, (smp_ids * ma + cpu_ids + 1) * [pips )i L2+ )
S
FOR (t3 = (smp_ids * ma + cpu_ids) * [ —2—1;

m3*p3
ts < min(w3, (smp_ids * ms + cpu_ids + 1) * [
Execute Computation of tile (¢1,t2,%3)

S
’LU3
m3*p3

Ds ta++){

}

Execute post-computation part of Communication

Retiling - Rectangular Tile Space

T maxpy T mg*p3

wég = m3 * p3
FOREACH CPU with coordinates (cpu-ids,...,cpu_idy)
in SMP node with coordinates (smp-ida,...,smp_id,) DO{
to = smp_ids * ma2 + cpu_ida;
ts = smp_ids * m3s + cpu_ids;
FOR (t; =0; ty <wi; t1++){
Execute pre-computation part of Communication
Execute Computation of tile (ti,t2,t3)
Execute post-computation part of Communication
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Table 5.2: Execution schemes implementation (overlapping vs. non-overlapping) using
the GM low level message passing system

l Non Overlapping Execution Scheme I

Overlapping Execution Scheme

gm_provide_receive_buffer()
do
poll the GM event queue
process the event
until data received

Pre-computation Part of Communication

If on first tile

Execute a non-overlapping receive
gm_provide receive_buffer() for tile (t1 + 1,%2,t3)
gm_send_with_callback() for tile (t1 — 1,t2,%3)

gm_send with_callback()

do
poll the GM event queue
process the event

until data sent

Barrier for Threads in SMP

Post-computation Part of Communication

do
poll the GM event queue
process the event
until send & receive completed
Barrier for Threads in SMP
If on last tile

Execute a non-overlapping send
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Figure 5.9: Experimental Data: Tile Size 128 x 32 x 32

periments we have eliminated the effect of cache miss penalties by using small iteration space
widths. If our iteration space dimensions, which are not assigned to the same processor, were too
long, the retiling schedule could have destroyed the data locality achieved by optimally selected

small tiles.

Note also that in the above examples the cluster assignment schedule, using tile size x, is
equivalent to the retiling schedule, using tile size 4x. This was expected, considering that by
construction the iterations executed and the data sent in these two cases are the same. What
differs is the execution order of iterations but here we have eliminated the cache misses overhead,

in order to test the optimality of our schedules and not data locality.

When following the non-overlapping execution scheme, the difference among the performance
of the four schedules is mainly due to the volume of the data to be transferred. As depicted
in Figure 5.11, the mirror assignment schedule involves double the communication of retiling
and cluster assignment schedule, while the cyclic assignment schedule involves 6 times the same

communication volume.
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Figure 5.11: Communication among SMPs

When following the overlapping execution scheme, since the communication volume is hidden
under computation, their difference is due to the time steps that each SMP has to stall waiting for
the required data to arrive. The number of these time steps are equal regarding the retiling and
the cyclic assignment schedules. However, using the cluster or the mirror assignment schedule,
the number of idle time steps (see Figures 5.3, 5.4) is multiplied by the number of tiles clustered
together, or, equivalently, the number of clunks of tiles, which fit the processing architecture.

In addition, note that all schedules achieve better performance for long iteration spaces.
This is due to the fact that, when the mapping dimension of the iteration space is comparatively
short, the time required for the last processor to start computing after the first data have arrived,

is not minor in comparison to the total execution time.

5.6.3 Simulation Data

The previous experimental data have been obtained on a cluster of 2 SMP nodes with 2 CPUs
each. Note in Figure 5.11 that in the retiling and the cluster assignment schedule there is
no SMP node that should both send and receive data. Thus, we expect that the relative
performance of the four schedules would change when scaling up our underlying architecture.
In order to evaluate the merits of the proposed schedules, using bigger clusters than the one we

had available, we performed a number of simulations, whose results are depicted in Figures 5.12-
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5.14. The performance of all four schedules has been simulated assuming that the initialization
of DMA and synchronization overhead is negligible, as deduced from microbenchmarking in our
platform.

In particular, all measurements of time intervals have been based on the rdtsc (Read
TimeStamp Counter) instruction, which is available on all Intel processors beyond Pentium.
This instruction returns the value of a 64-bit register which is incremented every clock cycle.
Since rdtsc can be called directly by a userspace process, we do not incur the overhead of the
gettimeofday system call. Thus, we have measured: 400 cycles for the send with_callback
function, which is 0.316usec on a PITT@1266MHz, 800 cycles for gm provide receive buffer,
which is 0.632usec and 5598 cycles for a barrier, which is 4.421usec. Thus, the total non-
overlappable communication latency imposed to each tile is less than 6usec in the worst case.
This overhead is negligible in comparison to a tile computation, which, in all cases, needed more
than 24msec.

Similar to Figures 5.8-5.10, the values plotted in Figures 5.12-5.14 express, for each proposed
schedule, the speedup obtained, divided by the number of CPUs used: Specdup

Number of Processors Used"

Therefore, the closest a plot is to 1, the more efficient the corresponding schedule will be.
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Figure 5.12: Simulation Data: Tile Space --- x 16 x 16 on a grid of 4 x 4 nodes with
2 x 2 CPUs each

It can be easily seen that when we are not interested in possible cache miss penalties imposed
by reorganizing the tile space, the retiling schedule is again the most efficient one, due to the
fact that it can fully exploit the computational power of all the SMP nodes and by definition it
achieves a perfect load balance.

As far as the cluster assignment schedule is concerned, for small tile spaces, it is inefficient
due to its slow pipeline filling. However, when the mapping dimension of the tile space is long
enough, this schedule achieves high speedups, due to the fact that it minimizes the volume of data
to be transferred. In fact, as explained in §5.6.2, the plot representing the cluster assignment
schedule will fall onto the plot representing the retiling schedule if we shift it parallely to the

x-axis (see Figures 5.12, 5.14). The cluster assignment schedule is less efficient than the retiling
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Figure 5.14: Simulation Data: Tile Space --- x 16 x 16 on a grid of 2 X 2 nodes with
4 x 4 CPUs each

S

schedule, only in case w; is not a multiple of m;p; (see Figure 5.13), due to load imbalance.

We also deduce that the cyclic assignment schedule is equivalent to the retiling schedule,
when the number of tiles along each dimension ¢ is a multiple of m;p; and the overlapping
execution scheme is used. Otherwise, if wZS is not a multiple of m;p;, their difference is due
to the fact that the cyclic schedule does not achieve a perfect load balance. Using the non-
overlapping execution scheme, the difference is due to the fact that, as analyzed in Figure 5.6
and §5.5, the cyclic schedule results to more communication load, which is not hidden under the
computation load. In addition, it can be more efficient than the cluster assignment schedule,
only in case we use the overlapping communication scheme. This is due to the fact that in this
case the extra communication overhead of the cyclic schedule is hidden under the computation
load.

The mirror assignment schedule is almost always the least efficient, apart from the case of
using the non-overlapping execution scheme on a grid of 2 x 2 SMP nodes. Even then, it is not
more efficient than the cluster assignment schedule. This is due to the fact that it combines the

disadvantages of the cyclic schedule with the disadvantages of the cluster assignment schedule.



146 Scheduling onto a fixed number of homogeneous SMP nodes

That is, there is at least one node, which has both to send and to receive data (unless there are
at most two nodes along each dimension of the grid, as in Figures 5.8-5.10 and Figure 5.14), thus
the duration of a time step is equal to the one of the cyclic schedule and the improvement in the
exploitation of the existing bandwidth is minor. In addition, after all SMP nodes have started
their execution, there are some idle time steps for some of them (see Figure 5.4), corresponding

to the slower pipeline filling of the cluster assignment schedule.

5.7 Block-cyclic assignment to SMPs

Since, as shown in §5.6.2-85.6.3, apart from retiling, the best performance is given by either the
cyclic or the cluster assignment schedule, we also designed a combination of these schedules:
block-cyclic assignment schedule. So, we hope to achieve the happy medium between them.
Especially when dealing with non-rectangular tile spaces, block-cyclic schedule is supposed to
achieve low communication overhead (as the cluster assignment schedule does), and at the same
time relatively good load balance (as the cyclic assignment schedule does).

As shown in Figure 5.15, block-cyclic schedule is formed by clustering together some neigh-
boring tiles, as we did in the cluster assignment schedule. For example, in Figure 5.15, we cluster
together by = 2 tiles. The difference, in comparison to the cluster schedule, lies in the fact that
now we do not cluster together so many tiles, as to get a number of rows of TILES equal to the
number of CPUs available. In the sequel, we cyclically schedule TILES, or GROUPS, similarly

to scheduling tiles or groups according to the cyclic assignment schedule.

Theorem 5.7 The makespan of block-cyclically assigning a rectangular tile space to SMP nodes,

assuming overlapping communication with computation is:

n S S n s n
pblock—cyclz’c—ove'rlap - |:Z [([ i ] - 1)%mzpz ([ bim ] - 1)%p1 ig H lrblf—;pl—l H b2(511)
=2 =2 =2
Proof: In order to achieve this schedule, we cluster together by X - -+ X by, neighboring tiles

(37,45, ..., 32), mapping them to TILE labelled as (53, Lﬁj , L%J) The boundaries of

S S
the consequent TILE Space are 0.uf = w{ —1 for the first dimension and 0..| 3~ L] = [2-1-1
fori=2....n

S
Thus, replacing w; with fug’ 1,4 =2,....,n in formula (5.1) and taking into account
formula (C.2), we get:
§BLOCK CYCLIC- NONOVERLAP = Z {(( bl‘ 1 —1)%m;p; + ( } +wy H[b
i=2 1 mlpl

n
In addition, as a TILE consists of [] b; tiles, assuming that the duration of a time step
i=2
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Figure 5.15: Block-cyclic assignment to SMP nodes.

Firstly, tiles are clustered together, so as to form TILES. Then, TILES are cyclically assigned to
CPUs. Chunks of TILES are executed one after the other, in lexicographic order.

n

is mainly determined by the computation time t.omp, a STEP will be equivalent to [] b; time
i=2

steps (excluding the DMA initialization and synchronization time). Thus, the total number
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of steps required for the completion of the execution will be

pblock—cyclic—overlap = pBLOCKfCYCLICfOVERLAP H bz =

B {z": [([wﬁ - 1)%mipi+(h7£i )%pl} +wf H [:b m“”] il;lzbi

=2 i=2

Theorem 5.8 The makespan of block-cyclically assigning a rectangular tile space to SMP nodes,

following the non-overlapping execution scheme, is:

n

S L S
pblockfcyclicfnonoverlap =C <Z [([%-‘ - 1)%m1pz + wls HQ“, ;Unlpj) (512)
1=

=2

n
where 1 < C < [] b;.
i=2

s
Proof: As in the proof of theorem 5.7, in formula (5.3) we replace w; with [

i =

2,...,n. Thus, we get:

n n

S S
E81.00K CYOLIC. NONOVERLAP = > [(fwz 1- 1)%77%}71} + wig 11 (biziipﬂ
i=2 i=2

n
In addition, as in the proof of theorem 5.6, a computation subSTEP is equivalent to [] b;
i=2

n

computation substeps, but a communication subSTEP is equivalent to less than [] b; commu-
i=2

nication substeps. In particular, if the communication load is equal along all communication

dimensions (as resulted by the method proposed in [Xue97a]) the amount of data to be trans-

ferred, as indicated in Figure 5.6, is H b; Z [CEsy 1)b H b; times the communication load
i=2 = i=2
of a tile. Thus, the makespan of the executwn will be

n
pblock—cyclic—nonoverlap = CpBLOCK—(JYCLIC—NONOVERLAP (Where 1<C< H bi) =

n s " i:2
pblock7cyclicfnonoverlap =C (Z |:([ b: —I - 1)%m1pl:| H (b iMiDi —|>

=2 =2

When the tile space is rectangular, the block cyclic assignment schedule can be implemented
by the pseudocode of Table 5.3.

5.8 Implementation issues for non-rectangular tile spaces

As deduced from Tables 5.1, 5.3, the implementation of the proposed schedules onto a rectangular

tile space space is quite simple and straightforward. However, concerning a non-rectangular tile



5.8 Implementation issues for non-rectangular tile spaces 149

Table 5.3: Implementation of the block-cyclic assignment schedule when the tile space is
rectangular

Block-Cyclic Assignment - Rectangular Tile Space
FOREACH CPU with coordinates (cpu_ids,...,cpu_idy)
in SMP node with coordinates (smp_ida,...,smp_id,) DO
FOR (tt2 = smp_ids * b * ma + cpu_ids * ba; tta < wg; tto+ = ba * ma * p2)
FOR (tts = smp_ids * bs * m3 + cpu_ids * bz; tt3 < w;f; tts+ = b3 * m3 * p3)
FOR (t; =0; t1 <wi; t1 ++){
Execute pre-computation part of Communication
FOR (t2 = tta; to < min(ws,tta +ba); t2++)
FOR (t3 = tts; ts < min(ws,tts +b3); t3 ++){
Execute Computation of tile (¢1,t2,%3)

}

Execute post-computation part of Communication

}

space, an eventual implementation may be inefficient or crush, if some details are not taken into

account.

5.8.1 Assigning as many neighboring tiles as possible to the same SMP node

According to the pseudocode of Table 5.1 for the cyclic assignment schedule, or of Table 5.3
for the block-cyclic one, we may assume that, when a non rectangular tile space is involved,
formulas

ty = ZQS + smp_idoms + cpu_ide and t3 = lgs + smp_idsms + cpu_ids

or

tty = 15 + smp_idoboms + cpu_idsobs and tty = l§ + smp_idsboms + cpu_idsbs

respectively, should be employed for the calculation of the lower loop bounds. However, this
allocation scheme would result to non-rectangular parts of the tile space being assigned to each
SMP node. It would increase the communication load of the final parallel execution, as depicted
in Figure 5.16(a).

In order to evict such an inefficient utilization of the bandwidth, we propose the use of

function

o if [ b—1>1
adjust_mod(l, o, 3,b) = { L?JOH_ﬂl lgla+ B+ >

[£]a+ 0 else (5:13)

which results to the allocation scheme of Figure 5.16(b), if we replace the lower bounds of the

respective loop indices by:

ty = adjust_mod(I5, mapa, smp_idams + cpu_idy, 1)

t3 = adjust_mod(I§, maps, smp_idsms + cpu_idsz, 1)
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Figure 5.16: Allocating a non-rectangular tile space to processors.
In this figure we have represented the projection of the tile space onto axis plane j5 — j5. We
indicate which processors undertake the boundary tiles, if we have a cluster of 2 x 2 SMP nodes,
containing 2 x 2 processors each. Tiles, which are assigned to the same SMP node have been
depicted using the same grey tone. We have also indicated the subsequent communication among
tiles assigned to different SMP nodes, using black arrows. In subfigure (a) more data transfers
are implied. Some neighboring tiles, which should exchange data are unnecessarily assigned to
different SMP nodes.
or

tty = adjust,mod(lgs, bamapa, smp_idabamsa + cpu_idaba, by)

tty = adjust_-mod(l5 , bsmsps, smp_idsbsms + cpu_idsbs, b3)

It can be incorporated in the pseudocode as indicated in Tables 5.4 and 5.7.

5.8.2 Evicting deadlocks

In this section, we shall analyze the problem of deadlocks in case the Myrinet platform is used

for the implementation, as in §5.6.1. Similar considerations should be taken when parallelizing

in most platforms. Some of them may not imply the use of tokens, however, they will not be

able to support an unlimited number of messages to be pending among processors.
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Table 5.4: Implementation of the cyclic assignment schedule when the tile space is not
rectangular

Cyclic Assignment - Non Rectangular Tile Space
FOREACH CPU with coordinates (cpu_ids,...,cpu_idy)
in SMP node with coordinates (smp_ida,...,smp_id,) DO
FOR (12 = adjust,mod(lf, ma % p2, smp_ida * ma + cpu_ida, 1); ta < us; tot = mo x p2)
FOR (t3 = adjust,mod(lgq,mgg * p3, smp_ids * m3z + cpu_ids, 1); ts3 < ug; ts+ = ms * p3)
FOR (t1=17; t1 <uf; t1++){

Execute pre-computation part of Communication
Execute Computation of tile (i1,t2,t3)
Execute post-computation part of Communication

}

where we have assumed that loop bounds 15, UQS l?, ug lls, uls have been recalculated, using Fourier Motzkin
Elimination method [BW95], [Ban93], so as to be expressed in the order to,t3, {1

Table 5.5: Implementation of the cluster assignment schedule when the tile space is not
rectangular

Cluster Assignment - Non Rectangular Tile Space

FOREACH CPU with coordinates (cpu_ids,...,cpu_idy)
in SMP node with coordinates (smp_ida,...,smp_id,) DO
FOR (4 =175 t1 <wuf; t1++){
Execute pre-computation part of Communication
maz,u?—min,l§+1 -|) .

FOR (t2 = maz(l5, min_l5 + (smp_ida * ma + cpu_ids) * [ P ;
maac,ug —min,l§+1 -|

S S maz-us —min ls+1mz*p2

FOR (t3 = max(l5, minl3 4+ (smp_ids x m3 + cpu_ids) * ]’#}

. S . s . . maz,u:;?fmin,l_;?Jrl .
ts < min(uz,min 3 + (smp_ids * ms + cpu_ids + 1) [——3—""2=837-7 — 1); t3+ +){

m3*p3

to < min(ug, man 5 + (smp_ida * mo + cpuida + 1) * [ —1); t2++)

’

Execute Computation of tile (¢1,t2,%3)

}

Execute post-computation part of Communication

}

where min_lo = min(lz(t1)) and maz_us = maz(us(ty)). Similarly, min_ls = min(l5(t1,t2)) and maz_us =
max(us(t1,t2)). These values can be calculated by applying Fourier Motzkin Elimination method [BW95],
[Ban93] to the tile space boundaries, considering that outermost loop indices are to, t3, respectively.
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Table 5.6: Implementation of the mirror assignment schedule when the tile space is not
rectangular

Mirror Assignment - Non Rectangular Tile Space
FOREACH CPU with coordinates (cpu_ids,...,cpu_idy)
in SMP node with coordinates (smp_ida,...,smp_id,) DO

_ us —15+1
FOR (z2 =0; 22 < [W—‘ —1; 22+ +){
to =I5 + o x Mo * pa + (1 — 22%2) * (smp_ida * ma + cpu_ida)+
+(22%2) * (m2 * p2 — 1 — smp_ida * ma — cpu_idz);

IF (5 <ty <wuj)
S .
FOR (x5 =0; xg < [Doftg—minds®tl7 g, 204 4]

ts = min_ls + x3 * m3 x pg f’(l — x3%2) * (smp_ids * m3 + cpu_ids)+
+(x3%2) * (m3 * p3 — 1 — smp_ids * ms — cpu_ids);
IF (I3 < t3 < uf)
FOR (t1 =175 t1 <ufs t1+4H){
Execute pre-computation part of Communication
Execute Computation of tile (%¢1,%2,%3)

Execute post-computation part of Communication

}

}

}

As in Table 5.4, we have assumed that loop bounds I3, us,
be expressed in the order to,t3,%;.

15, ug, If, uf, have been recalculated, so as to

Table 5.7: Implementation of the block-cyclic assignment schedule when the tile space is
not rectangular

Block-Cyclic Assignment - Non Rectangular Tile Space
FOREACH CPU with coordinates (cpu-ida,...,cpu_idy)
in SMP node with coordinates (smp_ida,...,smp_id,) DO
FOR (tto = adjust,mod(lg, b * Mg * pa, smp_ida * ba % Mg + cpu_ida * bz, b2);
tte < us; tto+ = by xmo * P2)
FOR (tt3 = adjust,mod(llgq, bs * mg * p3, smp_ids * bg * m3 + cpu_ids * bz, b3);
tts < uug; tts+ = b3 * m3 * p3)
FOR (t1 =U7; t1 <wul; t14++H){

Execute pre-computation part of Communication

FOR (t2 = max(l5,tt2); to < min(us,tts +ba —1); ta+ +)
FOR (L3 = max(l5,tts); tz < min(us,tts +bs —1); L3+ +){

if lf(tg, t3) <t1 < uf(tz, t3) Execute Computation of tile (t1,l2,¢3)

}

Execute post-computation part of Communication

}

As in Table 5.4, we have assumed that loop bounds I3, u3,
expressed in the order to, t3,t1. In addition, bound llgf(ttg) is calculated by formula giving lg(tg), if we replace

15, ug, 1§, vy, have been recalculated, so as to be
to with tto, if its multiplying factor is positive, or with tt5 + by — 1, if its multiplying factor is negative. That
is, we replace each aty with maz(a, 0)tty + min(a,0)(tte + by — 1). Similarly, uug (tt2) is calculated by the
formula giving u$ (t2), if we replace each aty with min(a,0)tts +maz(a,0)(tts + by — 1). Limits 115 (tta, tt3)

and uuf (tta, tt3) are calculated in the same way.
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When using Myrinet-GM [Myr02], the receive event queue provides 317 tokens per port,
254 for receive events and 63 for send events. However, when implementing a cyclic assignment
schedule (or a block-cyclic one), as in Figure 5.17, it is strongly possible that more than 254
receive events have arrived before the first of them is necessary for the node to go on with
computations. In the case of a rectangular tile space, this problem can be easily coped with as
follows: Before the computation of a tile each CPU may check for pending events, whether it
needs for data in order to go on, or not.

A This chunk of tiles will be assigned on the 2
Ji° = z = 3 existing SMPs & executed after the first
chunk execution finishes. Thus, notice the

difference between the time steps data are
received and used.

5

SMP1

\\\\\\\\\\\\N R e
S L b L ERL I LTI LT

o RS ety o

Figure 5.17: Time distance between the arrival of an event and the use of data it carries.

Since the mapping direction of the tile space is too short in this example, only 3 events will
remain pending until time step 8, when the execution of the second chunk of tiles starts in SMP
node 0. The longer dimension j{ will be, the more events will be pending.

In the case of a non-rectangular tile space, the implementation is not so simple. As shown in
Figure 5.18 and argued in the caption below, deadlocks in a non-rectangular tile space cannot
be coped with by simply checking the event queue before the execution of a tile. In Figure 5.18,
CPU 0 of node 1 is stalled.

A possible solution of this problem is as follows: When starting the execution of a row of
tiles, each thread, which is possible to receive data, should create an assistant thread. It checks
for pending events in the receive event queue and if it finds one, the event is processed and a
new receive token is made available. If there are no receive events in the queue, the CPU is
yielded to the main thread. So, if the assistant thread is useless, as in the case of a rectangular

tile space, it will not considerably slow down the execution of the main thread.

5.8.3 Simulation Data

In order to study the behavior of the block-cyclic assignment scheme, we have constructed a

simulation program. It really creates so many threads, as the processors of the cluster are
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Figure 5.18: Deadlocks in the execution of non-rectangular tile space.

In this figure, the projection of the tile space onto axis plane j5 — j5 is presented. While CPU
1 of SMP node 1 is computing the row of tiles labelled as C and filling in the receive buffers of
node 0, CPU 0 of the node 1 is stalling on a barrier between rows B and E. At the same time,
the data arriving from the neighboring node 0, due to the computation of row A, are likely to
fill in the receive buffers and use up the receive tokens of node 1. However, if the computation
of row A does not finish, the computation of row F will never start, so as to restore the receive
tokens needed for row C.

supposed to be. It acts as if traversing the tile space, but instead of executing computations, it
adds a time interval to the time previous computations have been computed and necessary data
have arrived. Instead of exchanging data, threads exchange the time instances each tile and its
subsequent communication are supposed to complete. Thus, we may experiment with all tile
spaces and with underlying architectures that we do not have really available. We may set the

communication characteristics to resemble any slow or fast network architecture.

Alternative Direction Implicit Integration (ADI)

First, we experimented with the Alternative Direction Implicit Integration (ADI) benchmark.
The code segment which implies the main computational load and which deserves parallelization

is given by the following nested for-loop:

for (t=0; t<T-1; t++)
for (i=0; i<I-1; i++)
for (j=0; j<J-1; j++){
X[t,i,j1=X[t-1,1i,j1+X[t-1,1i,j-11*A[i,j1/Bl[t-1,i,j-11-
X[t-1,i-1,j1*A[1,j]1/B[t-1,i-1,3];
B[t,i,j]=B[t-1,i,j1-A[i,j1*A[i,j]/B[t-1,1,j-1]
-A[i,jI1=*Ali,j1/Blt-1,i-1,3];



5.8 Implementation issues for non-rectangular tile spaces 155

The dependence matrix of this code segment is

111
D=10 0
0 01

One of the optimal tiling matrices, according to communication minimization criteria [Xue97a],

can be proven to be

10 10 10
P={0 10 0
0 0 10

After applying this tiling transformation, to the initial code segment with I=J=200 and T=1000,

the tiled code segment can be rewritten as follows:

for (1i=0; 1i<19; ii++)
for (jj=0; jj<19; jj++
for (tt=-2-ii-jj; tt<99-ii-jj; tt++){
Work with tile (tt, ii, jj)
}

We simulated the execution of this code segment on a cluster with a fixed number of SMP
nodes and a fixed number o CPUs inside each node. We tested all possible values of parameters

i, My, b;, so as to locate those characteristics that give the best performance. In the following

Speedup

f Processors Used as an index of

diagrams (Figures 5.19-5.22(b)) we have used the ratio g —7——

the efficiency of a schedule. The maximum value of this fraction may theoretically equal to 1.

Speedup
f Processors Used

The closer to 1 ratio w——— is, the more efficient the respective schedule is
considered.

In this benchmark the number of tiles of each row (ii, jj) is constant (equal to 102). Thus,
the computation load of the algorithm is evenly distributed to processors iff the rows of tiles are

evenly distributed. As an indicator of load balance along dimension i, we have used function

bali =
(w; — | =2 | pym;b;)b; else

pim;b;

The outcome of this function is equal to 0 iff the rows of tiles are evenly distributed to processors.

As a global indicator of load balance, we have used function

bal = Z bal;

As deduced from Figure 5.19, load balance is necessary and sufficient for achieving the opti-

mal performance when we afford just one SMP node. Otherwise, as deduces from Figures 5.20(a),
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Figure 5.19: Simulation Data: Execution of ADI onto a shared memory multiprocessor.

: Speedup : . : P :
Ratio —— oF Processors Used 1S plotted as a function of an index indicating load balance. The

optimal performance is achieved when this index indicates a perfect load balance.

5.21(a), 5.22(a), 5.23(a), 5.24(a), 5.25(a), load balance is necessary, but not sufficient for achiev-
ing the optimal speedup.

In order to model the data transfer load along dimension ¢, we have used function

lifp, =1
comm; = —1+ w
pimlibi-l else

The total communication load is modelled by function

comm = Z(commi H wj)

j#i

It can be easily deduced from Figures 5.23(b), 5.24(b), 5.25(b) that, when the non-overlapping
execution policy is followed, it is necessary to minimize the communication load, in order to
achieve the optimal speedup. When the overlapping execution policy is followed, we did not
notice such a relation between communication load and speedup.

In Figures 5.20(b), 5.21(b), 5.22(b), 5.23(c), 5.24(c), 5.25(c), we have used value 0 for the

horizontal axis when both load balance and communication indices equal to 0 and value 1
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(a) A perfect load balance is necessary, but not sufficient for achieving the optimal speedup.
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(b) The optimal speedup is achieved when the computation load is evenly distributed among processors and

the communication load is minimized.

Figure 5.20: Simulation Data: Execution of ADI onto a cluster of 2 SMP nodes, following
the overlapping execution policy

otherwise. We conclude that almost always the speedup is optimal when both load balance
and communication criteria are fulfilled. This holds even for the overlapping execution policy,

although we did not find out a direct dependence between communication load and speedup.

Speedup
f Processors Used

In Tables 5.8-5.9, we have indicated the maximum values of ratio 7
along with the virtual grid configuration and the blocking parameters used. Notice that, for
a non negligible value of the time needed for synchronization and overlapped communication,
the blocking parameters and grid configuration, that give the optimal performance are almost
identical for both the overlapping and the non-overlapping execution policies. In such rectangular
tile spaces, we should use the cluster assignment scheme, at least along dimensions with more
than one SMP nodes. In comparison to the simulations conducted in §5.6.3, notice that now we
have used a non negligible value for the times needed for synchronization and for the initialization
of communication, so as to predict the performance of slower than Myrinet interconnection

technologies.
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Figure 5.21: Simulation Data: Execution of ADI onto a cluster of 4 SMP nodes, following

the overlapping execution policy

Table 5.8: ADI - Simulation Data

The maximum values of ratio (Speedup)/(Number of Processors Used) are achieved when

the cluster assignment scheme is followed.

‘ P2 P3 ‘ mo  ms ‘ by b3 ‘ Speedup /processors
1SMP x2CPUs | 1 1 1 2 |20 10 0.99996
1 1 2 2 |10 10 0.99987
1SMP x4CPUs | 1 1 1 4 |20 5 0.99985
1 1 4 1 5 20 0.99985
1 1 2 4 110 5 0.99960
1SMP x 8 CPUs | 1 1 4 2 5 10 0.99960
1 1 2 4 5 5 0.99910
1 1 4 2 5 5 0.99910
1 1 1 10 | 20 2 0.99963
1SMP x10CPUs | 1 1 | 10 1 2 20 0.99963
1 1 2 5 |10 4 0.99950
1 1 5 2 4 10 0.99950

Gauss Successive Over-Relaxation (SOR)

In the sequel, we experimented with the Gauss Successive Over-Relaxation (SOR) benchmark.

The code segment which implies the main computational load and which deserves parallelization
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Figure 5.22: Simulation Data: Execution of ADI onto a cluster of 8 SMP nodes, following
the overlapping execution policy

is given by the following nested for-loop:

for (£t=0; t<T-1; t++)
for (i=0; i<I-1; i++)
for (j=0; j<J-1; j++){
Alt,i,j1=%(Alt,i-1,j1+A[t,1,j-10+A0t-1,i+1,jI+A[t-1,1,j+1])+
(1—w)Alt-1,i,3]

}

The dependence matrix of this code segment is

o = O
= o O
|
—
[a)

One of the optimal tiling matrices, according to communication minimization criteria [Xue97a],

can be proven to be

10 10 -10
P=1-10 0 10
0 -10 10
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(b) The minimization of the communication load is necessary, but not sufficient for achieving the optimal
speedup.
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(c) The optimal speedup is achieved when the computation load is evenly distributed among processors and
the communication load is minimized.

Figure 5.23: Simulation Data: Execution of ADI onto a cluster of 2 SMP nodes, following
the non-overlapping execution policy

After applying this tiling transformation, to the initial code segment with I=J=200 and T=1000,

the tiled code segment can be rewritten as follows:

for (ii=0; ii<119; ii++)
for (jj=ii; jj<ii+20; jj++
for (tt=max(0, jj-20, -ii+jj-1); tt<min(119, jj, -ii+jj+100); tt++){
Work with tile (tt, ii, jj)
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Figure 5.24: Simulation Data: Execution of ADI onto a cluster of 4 SMP nodes, following
the non-overlapping execution policy

Asg in the case of the ADI benchmark, we simulated the execution of this code segment on
a cluster with a fixed number of SMP nodes and a fixed number o CPUs inside each node. We

tested all possible values of parameters p;, m;, b;, so as to locate the configuration that gives the

Speedup as
f Processors Used

an index of the efficiency of a schedule. The maximum value of this fraction may theoretically

best performance. In Tables 5.10, 5.11, 5.12 we have used the ratio 5

Speedup
f Processors Used

equal to 1. The closer to 1 ratio 7" is, the more efficient the respective
schedule is considered.
For each cluster size, we have denoted the configuration that gives the best performance.

Then, we have indicated the optimal cyclic configuration and the optimal cluster configuration.
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Figure 5.25: Simulation Data: Execution of ADI onto a cluster of 8 SMP nodes, following
the non-overlapping execution policy

In the last column of Tables 5.10, 5.11, 5.12 we have indicated the percent reduction in efficiency
of the cyclic or cluster schedule, in comparison to the optimal block-cyclic schedule.

One can easily deduce that for such a non-rectangular tile space, the cluster assignment
schedule is totally out of a question. This is due to the fact that when a processor starts executing
the tiles assigned to it, the processors that have previously started executing computations, have
almost finished with them. Thus, the execution of the tile space is almost not parallelized.

On the other hand, when the overlapping execution policy is followed, the cyclic assignment
schedule can achieve an almost optimal performance, as deduced from Table 5.11. When the

non-overlapping execution scheme is followed, the cyclic assignment schedule may be up to 26%
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Table 5.9: ADI - Simulation Data

The maximum values of ratio (Speedup)/(Number of Processors Used) are achieved when
the cluster assignment scheme is followed, at least along dimensions with more than one SMP

nodes.
Speedup /processors
pa p3 | me ms | bo by | Non-overlapping Overlapping
1 2 1 1 1 10 0.976 0.998
2SMPs x 1CPU | 2 1 1 1 |10 1 0.976 0.998
1 2 1 1 2 10 0.976 0.998
2 1 1 1 (10 2 0.976 0.998
1 2 2 1 2 10 0.975 0.997
2SMPs x 2CPUs | 2 1 1 2 |10 2 0.975 0.997
1 2 2 1 5 10 0.975 0.997
2 1 1 2 |10 5 0.975 0.997
1 2 4 1 5 10 0.975 0.997
2SMPs x 4CPUs | 2 1 1 4 110 5 0.975 0.997
1 2 4 1 1 10 0.975 0.996
2 1 1 4 |10 1 0.975 0.996
1 2 4 2 5 5 0.950 0.994
2SMPs x 8CPUs | 2 1 2 4 5 5 0.950 0.994
1 2 4 2 1 5 0.949 0.991
2 1 2 4 5 1 0.949 0.991
2 2 1 1 |10 10 0.949 0.991
1 4 1 1 1 5 0.91 0.99
4 1 1 1 5 1 0.91 0.99
4SMPs x 1CPU | 1 4 1 1 2 5 0.909 0.99
4 1 1 1 5 2 0.909 0.99
1 4 1 1 4 5 0.907 0.989
4 1 1 1 5 4 0.907 0.989
2 2 1 2 |10 5 0.926 0.99
4 SMPs x 2CPUs | 2 2 2 1 5 10 0.926 0.99
1 4 2 1 2 5 0.908 0.989
4 1 1 2 5 2 0.908 0.989
1 4 4 1 1 5 0.908 0.988
4 1 1 4 5 1 0.908 0.988
4SMPs x 4CPUs | 1 4 4 1 5 5 0.906 0.988
2 2 2 2 5 5 0.906 0.988
4 1 1 4 5 5 0.906 0.988
2 4 1 1 |10 5 0.882 0.983
4 2 1 1 5 10 0.882 0.983
8§ SMPs x 1 CPU | 2 4 1 1 5 5 0.847 0.979
4 2 1 1 5 5 0.847 0.979
2 4 1 1 2 5 0.751 0.964
4 2 1 1 5 2 0.751 0.964
8 SMPs x 2 CPUs | 2 4 2 1 5 5 0.866 0.982
4 2 1 2 5 5 0.866 0.982
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Table 5.10: SOR - Simulation Data

P2 P3| ma m3 | b b3 ‘ Speedup/processors ‘ Efficiency reduction ‘
1 1 1 2 1120 5 0.999421271

ISMPx2CPUs [ 1 1| 2 1 1 1 0.988251853 1.2%
1 1 2 1 60 140 0.534139023 47%
1 1 4 1 1 140 0.997985691

ISMPx4CPUs [ 1 1| 4 1 1 1 0.987554938 1%
1 1 4 1 30 140 0.309307308 69%
1 1 8 1 1 140 0.989166534

ISMP x8CPUs | 1 1| 8 1 1 1 0.978837276 1%
1 1 8 1 15 140 0.216077827 78%
1 1 10 1 1 10 0.980911549

1 SMP x 10 CPUs | 1 1 10 1 1 1 0.971447503 1%
1 1 10 1 12 140 0.198010851 80%

Table 5.11: SOR - Simulation Data, following the overlapping execution policy

P2 p3 | ma m3 | by b3 ‘Speedup/processors ‘ Efficiency reduction‘

2 1 1 1 ) 1 0.987745575

2SMPs x 1 CPU | 2 1 1 1 1 1 0.954850866 3.3%
2 1 1 1 |60 140 0.53174481 46%
2 1 1 2 6 1 0.984724165

2SMPs x 2CPUs | 2 1 2 1 1 1 0.970604098 1.4%
2 1 2 1 |30 140 0.308091238 69%
2 1 2 2 2 1 0.972011902

2SMPs x 4CPUs | 2 1 | 4 1 1 1 0.962034972 1%
2 1] 4 1 |15 140 0.215110584 78%
2 1 2 4 |3 1 0.923522467

2SMPs x 8CPUs | 2 1 | 4 2 1 1 0.910115457 1.5%
2 1 8 1 8 140 0.166069888 82%
4 1 1 1 2 1 0.970575774

4SMPs x 1CPU | 4 1 1 1 1 1 0.954196445 1.7%
4 1 1 1 |30 140 0.305305101 69%
4 1 1 2 2 1 0.963700266

4SMPs x 2CPUs | 4 1 2 1 1 1 0.961991687 0.18%
4 1 2 1 |15 140 0.213112999 78%
4 1 1 4 | 3 1 0.918472758

4SMPs x 4CPUs | 4 1 2 2 1 1 0.910052738 0.92%
4 1| 4 1 8 140 0.164702948 82%
§ 1 1 1 1 1 0.945760927

8 SMPs x 1CPU | 8 1 1 1 1 1 0.945760927 0%
8§ 1 1 1 |15 140 0.208689671 78%
§ 1 1 2 2 1 0.895967945

8 SMPs x 2CPUs | 8 1 1 2 1 1 0.895508695 0.05%
8§ 1 2 1 8 140 0.161913245 82%

slower than the block-cyclic assignment schedule. This is due to the fact that it imposes a very
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Table 5.12: SOR - Simulation Data, following the non-overlapping execution policy

P2 p3 | ma ms3 | b b3 ‘ Speedup /processors ‘ Efficiency reduction ‘

2 1|1 1 8 1 0.933471933

2SMPs x 1CPU | 1 2 | 1 1 1 1 0.687822177 26%
1 2|1 1 (120 70 0.516923785 45%
2 1|1 2 8 1 0.931415461

2SMPs x 2CPUs | 2 1 | 2 1 1 1 0.804743867 14%
2 1| 2 1 | 30 140 0.297544003 68%
2 1|1 4 9 1 0.915342071

2SMPs x 4 CPUs | 2 1 | 4 1 1 1 0.797715939 13%
2 11| 4 1 | 15 140 0.206804037 7%
2 1] 2 4 4 1 0.872820864

2 SMPs x 8 CPUs | 2 1 4 2 1 1 0.761663718 13%
2 1| 8 1 8 140 0.159950583 82%
4 1|1 1 4 1 0.852477691

4SMPs x 1CPU | 4 1 | 1 1 1 1 0.678914342 20%
1 4|1 1 [120 35 0.276955342 68%
4 1] 1 2 4 1 0.847714428

4SMPs x 2CPUs | 4 1 2 1 1 1 0.797329214 5.9%
4 1| 2 1 | 15 140 0.18935053 78%
4 1] 1 4 4 1 0.832239744

4SMPs x 4CPUs | 4 1 2 2 1 1 0.761153699 8.5%
4 1| 4 1 8 140 0.146127364 82%
4 2|1 1 4 4 0.765480087

8SMPs x 1CPU | 8 1 | 1 1 1 1 0.672901118 12%
8 1| 1 1 | 15 140 0.164661875 78%
8 1| 1 2 2 1 0.742509583

8 SMPs x 2CPUs | 8 1 2 1 1 1 0.731556309 1.5%
8 1| 2 1 8 140 0.130694603 2%

dense communication pattern. Thus, the block-cyclic assignment scheme achieves the happy

medium between communication load and concurrent execution on different processors.
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Conclusion

In this thesis, we have added some notions to the difficult problem of automatic parallelization
of nested for-loops.

In [GAKO03], [GDAKO02a], [GDAKO04], a complete framework for automatically producing
parallel SPMD code has been presented. However, we assumed that there are always as many
processors as needed, or, that processes are scheduled by the operating system on the available
processors. However, as explained in §5.1, this scheduling may not be optimal. Chapter 5 of this
thesis is now presenting a solution to this problem. In addition, we had not taken into account
multi-level parallel architectures. This case is coped with by Chapter 4 and §3.3 of this thesis.

In [Sot04], Sotiropoulos has presented an innovating parallel scheduling, which can exploit
advanced communication features of modern clusters, such as Direct Memory Accessing and
Zero-Copy protocols [KSGO03], [GSKO01]. This thesis is now modifying the schedule proposed by
Sotiropoulos, in order to exploit the proximity of processors within the same SMP node.

Thus, this thesis can be considered as the last among realized steps for the parallelization of

nested for-loops:

1. First of all, one should conduct a dependence analysis of the code segment, as described
in [Ban88], [Pug92]. We assume that this step gives uniform dependences, as described in
§2.3 and in §B.2.

2. Then, we select the optimal tiling, according to cache locality or communication overhead
minimization criteria, as described in [KRC99], [LRW91], [WL91a], [PHP03], [MHCF9§]
and [AKN95], [RR02], [BDRR94], [Xue97a], [Xue00], [RR04].

3. Sequential code is converted to serial tiled code, according to the tiling transformation
selected in step 2, as described in [GAKO2b], [GAKO03] and in §3.2 of this thesis. This

conversion is consisted of two substeps:
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(a) Producing the bounds of the tile space from the bounds of the iteration space (§3.2.1)

and

(b) Producing the appropriate boundary expressions for traversing the internal of each

tile, as well as determining the incremental steps of each loop index (§3.2.2).

4. A communication policy (overlapping or non-overlapping) may be selected [GSK01], [KSG03],
according to the hardware technology that will be used. If the network interconnection
supports Direct Memory Access (DMA) protocols, we highly recommend the selection of
the overlapping communication policy. If DMA is not supported by hardware, then over-
lapping communication will not be really implemented. Thus, writing code for overlapping
communication over this hardware architecture will only introduce unnecessary delays to

the final program.

5. If our cluster is consisted by Symmetric Multiprocessors (SMPs), then the proximity of
processors in the same SMP node can be exploited by applying a grouping transformation
to the tile space, produced in step 3a, and then scheduling groups instead of tiles, as
described in [ASTKO02b], [AST*05] and in Chapter 4 of this thesis.

6. If the number of rows of tiles produced by step 3a exceeds the number of CPUs available,
then it is advised to apply a static scheduling of tiles or groups, as described in [AKKO04]
and in Chapter 5 of this thesis. If the tile space (step 3a) is rectangular, then we need not
take into account load balancing issues. Thus, we may select between the cyclic assignment
schedule (§5.2) and the cluster assignment schedule (§5.4). The cyclic assignment schedule
is preferable when the overlapping communication policy has been selected in step 4, while
cluster assignment schedule is preferable when the non-overlapping communication policy
has been selected. If the tile space is not rectangular, then the block-cyclic assignment
schedule constitutes a useful compromise of the advantages and disadvantages of cyclic

and cluster assignment schedules.

7. Finally, serial tiled code, produced in step 3, can be converted into parallel code, taking
into account the decisions of steps 4, 5, 6, and allocating data to processes, as described
in [GDAKO2a], [Gou03] and in §3.3 of this thesis.

Although a lot of research has been conducted in this area, we cannot yet automatically
produce optimal parallel tiled code for the execution of code segments with nested for-loops

onto parallel architectures.

e First of all, we have not yet investigated the interaction among the tile selection techniques
(step 2) and subsequent steps (4, 5, 6). It is strongly possible that the application of
different communication policies or assignment schemes will modify the criteria for the
selection of the optimal tiling transformation. Thus, maybe an overall analysis of problems

corresponding to steps 2, 4, 5 and 6 would modify the final parallel code produced in step 7.
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e In addition, we may incorporate in the previous procedure the data layout and indexing
techniques described in [AK04], [AKTO05]. In these papers, E. Athanasaki et al. have
presented an alternative array data layout, which stores array elements in memory in the
order they are fetched in cache by the tiled nested for-loop code segment. Then, the
combination of parallelization and peak cache performance is expected to further boost
the efficiency of the final parallel code. However, incorporating these techniques, will add

one more parameter in the tile selection methods applied in step 2.

e Another issue that has not been yet investigated is false sharing inside SMP nodes ([CS99],
pages 123-156, [TLH94], [KCRBO03]). Is there such a possibility? How can it be evicted?
Since tiling has initially been designed for parallelization onto clusters with distributed
memory, or for exploiting cache locality on single processing units, these questions have

not been yet addressed in the literature.

e Furthermore, one should find out if these techniques can be applied to code segments with
imperfectly nested for-loops. As described in [AMPOOb], [AMP00a], [Xue96], [SL99],
[Kul98], [LLLO1], every imperfectly nested for-loop can be converted into perfectly nested
for-loop, using if statements. However, the techniques described in the above papers are
mainly aimed for cache locality optimization, not for parallelism. The computation load of
iterations will not be equal. Thus, tiling into equal sized tiles will result into computation
load imbalance. On the other hand, the results of this thesis and of referenced related

work have been based on the assumptions that tiles are identical.

e Similarly, if the computing system is heterogeneous, tiling into identical tiles will not
give equal computation times for all of them. This fact will not be consistent with the
underlying assumptions of this thesis and of referenced related work. Then, the techniques
presented in this thesis might be combined or enhanced with the ones proposed in [Mor9§],
[KP96], [CZL95], [CZLI7]. However, the methods proposed by above papers cannot replace
the schemes proposed in this thesis, since, they concern the parallelization of doall loops
([CZLY5], [CZ197]), or employ a dynamic scheduling algorithm ([KP96]).

e In order to further reduce the execution time of parallel programs on SMP nodes, we
should also query which CPUs of an SMP node should communicate with other SMP
nodes. Should each CPU exchange data that concern only its own work? Or should a
single processor undertake the communication needed for the whole SMP node? In case
the second possibility is taken, how shall we balance the computation4+communication
load of CPUs?
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Appendices
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Summary of Notations

Symbol Explanation Page
N set of natural numbers 12
N* set of natural numbers, excluding 0, N* = N — {0} 12
Z set of integer numbers 12
zZ* set of integer numbers, excluding 0, Z* = Z — {0} 12
n Dimensions of the iteration space 12
J" Tteration space 13
j= (j1,---,7n) | Iteration coordinates vector 12
JS Tile space 30
j—é = (47,...,72) | Tile coordinates vector: j_é = |Hj| 30
TOS Tile origin space 30
jo = (Joi,---,Jon) | Tile origin 30
TIS Tile iteration space 30
TTIS Transformed tile iteration space 29
' =(j,....7.) | Instance of the transformed tile iteration space 63
J=H(=jo) & j=PWVi¥+])
DS Data space DS = {f,(j)|7 € J"} 75
LDS Local data space 78
IDS = {j7’ e 7| 0<j/<offk —i—mkvkk/f;’kk,k = 1,1”"71’]{ +1 }
NO < g < of fi + [t|vi/h i
§r = (47, ...,J7) | Instance of the local data space 3" = map(j, t) 78
JG Group space 90
ja = (5¢,...,3%) | Group coordinates vector jé = LHGJ%J 90
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Summary of Notations

Symbol Explanation Page
H Tiling matrix 28
g Smallest natural number such that gH is an integer matrix 31
P Inverse tiling matrix 28
|4 Diagonal matrix with vy, the smallest integer such that 61
vk;/zglf/f to be integral
H' Transformation matrix from TIS to TTIS (H' = VH) 59
P’ Transformation matrix from TTIS to TIS (P’ = H'~1) 59
H Hermite normal form of matrix H’ 61
HE¢ Grouping matrix 90
P¢ Inverse grouping matrix 90
D Dependence matrix 16
D’ Transformed dependence matrix D' = H'D
DS Tile dependence matrix 32
II Linear time scheduling vector 19
e Linear time scheduling vector concerning groups 98
m=mq X ---xXxm;_1X | Number of CPUs inside an SMP node 75,93
XMjp1 X - X My,
P=p1 X X pi_1X Number of available SMP nodes 127
XPit1 X - X Pp
sm;u'd SMP node identification vector 75
cpzlid processor identification vector inside an SMP node 75
p;d global processor identification vector 75
pid, = pid, = cpu_id, + smp_id,m, <
cpuidy = pid,%my, smp_id, = |pid,/my |
£ Makespan = Number of time steps needed for the completion 20
of the execution
i The longest dimension of the tile space 76, 108
ey ug Lower and upper bounds of the iteration space k =1,...,n 12
l,f, u;j Lower and upper bounds of the tile space k =1,...,n 30
w;j Width of a rectangular tile space along dimension £, 101

wi=ui -1+, k=1,...,n




B

Algorithmic Model - Summary of

assumptions

B.1: We consider an n-dimensional perfectly nested for-loop:
for (ji=li; j1 <wi; ji++){
for (jn=ln; In < Ups Jn + +>{

Loop Body
}

}

where [; and u; are integer parameters, [ and u; (k= 2,...,n) are functions of the outer loop

indices. Specifically, they may have the form:

lk = ma’x(’—fkl(jlw"7jk*1ﬂ7"'7 (f’ﬂ“(jla' : 'ajkfl)-D

and

u, = man(gr1 (J, - Jk—1) 1o o5 L9 (1o - -5 Jk—1)])s

where fr; and gy, are affine functions. (see page 12)

B.2: All dependence vectors are uniform, i.e. independent of the indices of computations. (see

page 16)

B.3: There are at least n linearly independent dependence vectors. Thus, the class of depen-
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dence matrix D equals to n. (see page 29)

B.4: Anti-dependences and output dependences have been eliminated using more variables
[CDRV9S8]. (see page 16)

B.5: All dependence vectors are smaller than the tile size, thus they are entirely contained in
each tile’s area. This means that the tile dependence matrix D contains only 0’s and 1’s. (see

page 33)

B.6: The processing architecture consists of an homogeneous cluster of single CPU or SMP

nodes. (see page 75)
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Simple Mathematical Formulas

Lemma C.1 If all n points y;, i = 1,...,n belong to a convex space J", then every point

Y=ayi+ -+ anyn

where a; € [0,1] and ay + - - - + a, = 1, belongs to J".
Geometrically, this statement can be expressed as follows: If all points y;, i = 1,

to a convex space J", then all points located among them belong to J™.

Proof: If all points y;, i = 1,...,n belong to J", then it holds By; < gfor alli=1,...

Consequently, By = > a;By; < > aib="b. Thus, point i also belongs to J".
j i=1

i=1

Lemma C.2 Function

f($1,...7$n):l’1+"'+l'n,

where x1 X -+ X x, = ¢ and x1,...,x, > 0, is minimized when

Proof: Function
flay, .o xn) =21+ + Xy,

where 1 X -+ X 1, = ¢ = x, = W, can be rewritten as follows:
n—

&
flre,.. . ,xp_1) =01+ FTp 1+ ——m.
T1X o X Ty

52
awzf >0, Vp—_1-

n—1

of _1_ _ e -2
Therefore il Sl ot A and

(C.1)

...,n belong

M.

4|
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; ‘o minimized i af  _
Thus, function f(x1,...,x,_1) is minimized in respect to the value of x,,_1 when T =
1
3
_(_ e . o
0=z,_1 = (mlx---xz",z) . For this value of x,_1 we can write:

c 2
o) = _ 2 —m8 .
f(xlv s Ly 2) x + + Tp—2+ <.731 ST 1‘7;—2)

After we have eliminated variables xp—;11,...,x, this way, we conclude that function f
can be expressed as

. c ’
f(xlw--;l‘n—i)—$1+"'+$n—i+l<xlxmxmni> .

. T it 2
of  _ _ c ' i o°f ) ;
Therefore e = 1 (11X-~Xocn_i_1) z,_+ and 927 > 0, Vxp_;- Thus, function
f(x1,...,xn_y) is minimized in respect to the value of x,_; when aff_‘ =0= 2, =
; ,
c 1+1 . . N
(m) . For this value of x,_; we can write that

1

c T
n—i— = n—i— - 1 .
f(,]’,'l7 , L ]_) l‘1+ +x 1+(Z+ )(x1><"'><$n—i—l>

If we continue the elimination of the variables in this way, we conclude that the mini-

mization of [ is achieved when x1 = cw. After a backwards substitution of the variables in
1

. 1 o
the expressions x,_; = <WCII) we conclude that the minimum value of
n—ie

flxy,...,zp) =214+ +x,

. . 1
is achieved when 1 =--- = x, =cn. 4

Lemma C.3 Function

ai G
f(xl)"'wrn):i_’_”'—'_i)
€ L,
where x1X---Xx, =c¢, ai,...,a, are positive constants and x1, ..., T, are positive, s minimized
when
1
c no
T, =a; | —— ,i=1,...,n
ayp X -+ X ap
Proof: It holds that £+ x --- x g» = @A =constant. Thus, according to Lemma C.2,
n -
1
L 1
- . ay __ _ an _ (a1 X--Xanp\7n _ c "
function f(x1,...,x,) is minimized when === (%) "= =a (m) ,
1=1,...,n. 4

Lemma C.4 If a € Z and b,c € N*, it holds that
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and

5]

e

122 =1 (C:3)

O ‘

Proof: There is a pair of x € Z, y € N such that a = bcx —y and 0 <y < bec — 1. Thus,

it holds that
a bex — vy

[l = 1%
In addition, there is a pair of y1,y2 € N such that y = by +y2 and 0 < yp < ¢c—1,
0<ys <b-—1. Thus, it holds that

==

a bex—by1 —ya2 cr —
g P e s P LS AR

Thus, formula (C.2) is valid.

Similarly, there is a pair of w € Z, z € N such that a = bcw + z and 0 < z < be — 1.
Thus, it holds that

a bcw + z
L%J 5 ke =

In addition, there is a pair of z1,z0 € N such that z = bz + 29 and 0 < z1 < ¢ — 1,
0 < z9 <b-—1. Thus, it holds that

L%J B Lbcw+%Z1+Z2J B cw + 21 B
22 = | = | 2
Thus, formula (C.3) is valid. a
Lemma C.5 Ifa € Z and b € N*, it holds that
a—1 a
=|-]—-1 C4

22 =1 (©4)
Proof: There is a pair of x € Z, y € N such that a =bx —y and 0 <y <b—1. Thus, it
holds that 5

1= —1=2-1

In addition, since 0 <b—y—1<b—1, it holds that

a—1 br —y—1

b

|=xz-1

Lemma C.6 Ifa € Z and b € N*, it holds that

~lz)=T-31 (C.5)
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Proof: There is a pair of v € Z, y € N such that a =bx +y and 0 <y <b—1. Thus, it
holds that b
a _ bty

In addition, it holds that

b b
_{
Lemma C.7 Ifa,b e N*, it holds that
[ar] <b (C.6)
(5]
Proof: There is a pair of z,y € N such that a =bx —y and 0 <y < b— 1. Thus, it holds
that
a a —Y (C.5) Yy
— 1=721=b 271 =7 — <b
oyl =Tl =+ 150 1Y) <
_{
Lemma C.8
n n n
a1 + aq Z [(ai -1) H ak] = Hai (C.7)
i=2 k=i+1 i=1
Proof:

a1 +ay[(az —Das...an+ (a3 —Dag...an+ -+ (ap—2 — Dap_1an + (an-1 — Va, +a, — 1] =

=a1+ar[(aea—1as...an+ (a3 —1)ag...an+ -+ (an—2 — 1)an—1ay + an—1a, — 1] =
=a;+a[(az —Das...an+ (a3 —Dag...ap + -+ an_sap_1a, — 1] =

=a1 +ay [agas...a, — 1] = ajas...ay
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