Exploring the Capacity of a Modern
SMT Architecture to Deliver High
Scientific Application Performance *

Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis
and Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering
{valia,anastop,kkourt,nkoziris}@cslab.ece.ntua.gr

Abstract. Simultaneous multithreading (SMT) has been proposed to
improve system throughput by overlapping instructions from multiple
threads on a single wide-issue processor. Recent studies have demon-
strated that heterogeneity of simultaneously executed applications can
bring up significant performance gains due to SMT. However, the speedup
of a single application that is parallelized into multiple threads, is often
sensitive to its inherent instruction level parallelism (ILP), as well as the
efficiency of synchronization and communication mechanisms between
its separate, but possibly dependent, threads. In this paper, we explore
the performance limits by evaluating the tradeoffs between ILP and TLP
for various kinds of instructions streams. We evaluate and contrast spec-
ulative precomputation (SPR) and thread-level parallelism (TLP) tech-
niques for a series of scientific codes executed on an SMT processor. We
also examine the effect of thread synchronization mechanisms on multi-
threaded parallel applications that are executed on a single SMT proces-
sor. In order to amplify this evaluation process, we also present results
gathered from the performance monitoring hardware of the processor.

1 Introduction

Despite the efficiency of code optimization techniques and the continued ad-
vances in caches, memory latency still dominates the performance of many ap-
plications on modern processors. This CPU-memory gap seems difficult to be
alleviated; on the one hand, CPU clock speeds continue to advance more rapidly
than memory access times, on the other hand, the data working sets increase
and complexity of conventional applications sets a limit on ILP.

One approach to maintain high throughput of processors despite the large
relative memory latency has been Simultaneous Multithreading (SMT). SMT is
a hardware technique that allows a processor to issue and execute instructions
from multiple independent threads in the same cycle. The dynamic sharing of

* This research is supported by the Pythagoras II Project (EPEAEK II), co-founded
by the European Social Fund (75%) and National Resources (25%).

the functional units allows for the substantial increase of throughput, compen-
sating for the two major impediments to processor utilization - long latencies
and limited per-thread parallelism.

Thread-level parallelism (TLP) and speculative precomputation (SPR) have
been proposed to utilize the multiple hardware contexts of the processors for
improving performance of a single program. With TLP, sequential codes are par-
allelized so that the total amount of work is decomposed into independent parts
which are assigned to a number of software threads for execution. In SPR, the
execution of programs is facilitated with the introduction of additional threads,
which speculatively prefetch data that is going to be used by the sibling com-
putation threads in the near future, thus hiding memory latencies and reducing
cache misses [13], [5], [10].

The benefit of multithreading on SMT architectures depends on the applica-
tion and its level of tuning. In this paper we demonstrate that significant per-
formance improvements are really difficult to achieve for optimized, fine-tuned
parallel applications running on SMT processors. We tested two different configu-
rations. Firstly, we balanced the computational workload of a parallel benchmark
on two threads, statically partitioning the iteration space to minimize dynamic
scheduling overhead. Secondly, we ran a main computation thread in parallel
with a helper-prefetching thread. The latter was spawned to speculatively pre-
compute L2 cache misses. Synchronization of the two threads is essential, in
order to avoid the helper thread from running too far ahead, evicting useful
data from the cache.

The rest of the paper is organized as follows. Section 2 describes related prior
work. Section 3 deals with implementation aspects of software techniques to ex-
ploit hardware multithreading. Section 4 explores the performance limits and
TLP-ILP tradeoffs, by considering a representative set of instruction streams.
Section 5 describes the experimental framework, presents performance measure-
ments obtained from each application, and discusses their evaluation. Finally,
we conclude with section 6.

2 Related Work

SMT [12] is said to outperform previous execution models because it combines
the multiple-instruction-issue features of modern superscalar architectures with
the latency-hiding ability of multithreaded ones. However, the flexibility of SMT
comes at a cost. When multiple threads are active, the static partitioning of
resources (e.g., instruction queue, reorder buffer, store queue) affects codes with
relative high instruction throughput. Static partitioning, in the case of identical
thread-level instruction streams, limits performance, but mitigates significant
slowdowns when non-similar streams of microinstructions are executed [11].
Cache prefetching is a technique that reduces the observed latency of mem-
ory accesses by bringing data into the cache before it is accessed by the CPU.
Numerous thread-based prefetching schemes, either static or dynamic, have re-
cently been proposed, including Collins et al., Speculative Precomputation [3],

and Kim et al., Helper-Threads [5]. The key idea is to utilize otherwise idle
hardware thread contexts to execute speculative threads on behalf of the main
thread. These speculative threads attempt to trigger future cache-miss events far
enough in advance of access by the non-speculative (main) thread, so that the
memory miss latency can be masked. A common implementation pattern was
used in these studies. A compiler identifies either statically or with the assistance
of a profile the memory loads that are likely to cause cache misses with long la-
tencies. Such load instructions, known as delinquent loads, may also be identified
dynamically in hardware triggering speculative-helper threads [13]. SPR targets
load instructions that exhibit unpredictable irregular, data-dependent or pointer
chasing access patterns. Traditionally, these loads have been difficult to handle
via either hardware or software prefetchers.

3 SPR and Synchronization Implementation Issues

There are two main issues that must be taken into account in order to effectively
perform software prefetching using the multiple execution contexts of a hyper-
threaded processor. First of all, the distance at which the precomputation thread
runs ahead of the main computation thread, has to be sufficiently regulated. This
requirement can be satisfied by imposing a specific upper bound on the amount
of data to be prefetched. In our codes it ranges from % ([10]) to 3 of the L2 cache
size, where A is the associativity of the cache (8 in our case). Whenever this up-
per bound is reached but the computation thread has not yet started using the
prefetched data, the precomputation thread must stop its forward progress in or-
der to prevent potential evictions of useful data from cache. It can only continue
when it is signaled that the computation thread starts consuming the prefetched
data. In our program codes, this scenario is implemented using synchronization
barriers which enclose program regions (precomputation spans) whose memory
footprint is equal to the upper bound we have imposed. In the general case, and
considering their relatively lightweight workload, precomputation threads reach
always first the barriers.

For codes whose access patterns were difficult to determine a-priori, we had
to conduct memory profiling using the Valgrind simulator[8]. From the profiling
results we were able to determine and isolate the instructions that caused the
majority(92% to 96%) of L2 misses. In all cases, precomputation threads were
constructed manually from the original code of the main computation threads,
preserving only the memory loads that triggered the majority of L2 misses; all
other instructions were eliminated.

Secondly, we must guarantee that the co-execution of the precomputation
thread does not result in excessive consumption of shared resources that could
be critical for the sibling computation thread. Despite the lightweight nature
of the precomputation threads, significant processor resources can be consumed
even when they are simply spinning on synchronization barriers.

The synchronization mechanisms have to be as lightweight as possible and
for this purpose we have implemented lightweight spin-wait loops as the core
of our synchronization primitives, embedding the pause instruction in the spin
loop [4]. This instruction introduces a slight delay in the loop and de-pipelines
its execution, preventing it from aggressively consuming valuable, dynamically
shared, processor resources (e.g. execution units, branch predictors).

However, some other units (such as micro-ops queues, load/store queues and
re-order buffers), are statically partitioned and are not released when a thread
executes a pause. By using the privileged halt instruction, a logical processor
can relinquish all of its statically partitioned resources, make them fully avail-
able to the other logical processor, and stop its execution going into a sleeping
state. The halt instruction is primarily intended for use by the operating system
scheduler. Multithreaded applications with threads intended to remain idle for a
long period, could take advantage of this instruction to boost their execution. We
implemented kernel extensions that allow from user space the execution of halt
on a particular logical processor, and the wake-up of this processor by sending
IPIs to it. By integrating these extensions in the spin-wait loops, we are able
to construct long duration wait loops that do not consume significant processor
resources. Excessive use of these primitives, however, in conjunction with the
resultant multiple transitions into and out of the halt state of the processor,
incur extra overhead in terms of processor cycles. This is a performance tradeoff
that we took into consideration throughout our experiments.

4 Quantitative analysis on the TLP and ILP limits of the
processor

This section explores the ability and the limits of hyper-threading technology on
interleaving and executing efficiently instructions from two independent threads.
We constructed a series of homogeneous instruction streams, which include basic
arithmetic operations (add,sub,mul,div), as well as memory operations (load,
store), on integer and floating-point 32-bit scalars. For each of them, we tested
different levels of instruction level parallelism.

In our experiments, we artificially increase(decrease) the ILP of the stream
by keeping the source and target registers always disjoint, and at the same
time expanding(shrinking) the target operands (T"). We have considered three
degrees of ILP for each instruction stream: minimum (|7'|=1), medium (|7]=3),
maximum (|7']=6).

4.1 Co-executing streams of the same type

As a first step, we execute each instruction stream alone on a single logical
processor, for all degrees of ILP (1thr columns of Table 1). In this way, all
execution resources of the physical package are fully available to the thread ex-
ecuting that stream. As a second step, we co-execute within the same physical
processor two independent instruction streams of the same ILP, each of which

instr. 1thr 2thr 1thr 2thr 1thr 2thr
fadd 6.01 6.03 2.01 3.28 1.00 2.02
fmul 8.01 8.04 2.67 4.19 2.01 3.99
faddmul 7.01 7.03 2.34 3.83 1.15 2.23
fdiv| 45.06| 99.90| 45.09| 107.05| 45.10| 107.43
fload|1049.05(2012.62|1049.06(2012.43/1049.05(2011.86
fstore|1050.67|1982.99(1050.68/1983.07|1050.67|1982.93
iadd 1.01 1.99 1.01 2.02 1.00 2.02
imul| 11.02| 11.05| 11.03| 11.05| 11.03 11.05
idiv| 76.18| 78.76| 76.19| 78.71| 76.18 78.73
iload 2.46 4.00 2.46 3.99 2.46 3.99
istore 1.93 4.07 1.93 4.08 1.93 4.07

Table 1. Average CPI for different TLP and ILP execution modes of some common
instruction streams

gets bound to a specific logical processor (2thr columns of Table 1). This gives
us an indication on how various kinds of simultaneously executing streams of
a specific ILP level, contend with each other for shared resources, and an esti-
mation whether the transition from single-threaded mode of a specific ILP level
to dual-threaded mode of a lower ILP level, can hinder or boost performance.
For example, let’s consider a scenario where, in single-threaded and maximum
ILP mode, instruction A gives an average CPI of Citnr—mazrrnp, While in dual-
threaded and medium ILP mode the same instruction gives an average CPI of
Cothr—mediLP > 2 X Clthr—maziLp- Because the second case involves half of the
ILP of the first case, the above scenario prompts that we must probably not
anticipate any speedup by parallelizing into multiple threads a program that
uses extensively this instruction in the context of high ILP (e.g. unrolling). Bold
elements of Table 1 indicate best case performance.

4.2 Co-executing streams of different types

Table 2 presents the results from the co-execution of different pairs of streams
(for the sake of completeness, results from the co-execution of a given stream
with itself, are also presented). We examine pairs whose streams have the same
ILP level. The slowdown factor represents the ratio of the CPI when two threads
are running concurrently, to the CPI when the benchmark indicated in the fist
column is being executed in single-threaded mode. Note that the throughput
of integer streams is not affected by variations of ILP and for this reason we
present only exact figures of medium ILP. Slowdown factors that vary less than
0.05 compared to the slowdown factor of the medium ILP case in a specific
stream combination, are omitted. Bold elements indicate the most significant
slowdown factors.

5 Experimental Framework and Results

We experimented on Intel Xeon processor enabled with HT technology, running
at 2.8GHz. With the introduction of HT technology, the performance monitoring

Co-executed Instruction Streams
ILP| fadd] fmul] fdiv] fload| fstore
min: 1.004 1.004
fadd| med: 1.635 1.787 1.010 1.398 1.409
max: | 2.016 | 2.801 | 2.023 1.474 1.462
min: 1.002 1.004 1.006
fmul| med: 1.433 1.566 1.062 1.391 1.393
max: 1.384 | 1.988
min:
med:

2.217
1.017 1.027 | 2.374 1.413 1.422

min: 1.144 1.169
fload| med: 1.286 1.255 1.153 | 1.919 | 1.907
max: 1.684 1.358

min: 1.134 1.133
fstore| med: 1.229 1.229 1.150 | 1.897 | 1.887
max: 1.625 1.316

idiv| iload| istore]

med: 1.117 | 1.515 1.405

| e \ \ \ \
| med: | l l l l
imul| med: [1.116 | 1.002 | 1.008 [1.003 | 1.004 |
| med: | l l l l
| med: | l l l l

idiv[med: | 1.042] 1.019] 1.033 [1.003] 1.003]
[iload| med: [2.145 [0.941] 0.934] 1.621] 1.331 |
min: 4.072

istore| med: | 4.299 1.979 1.970 1.986 2.115
max: 2.160 0.941 0.934 1.622 1.331

Table 2. Slowdown factors from the co-execution of various instruction streams

capabilities of the processor were extended, so that the performance counters
could be programmed to select events that are qualified by logical processor IDs,
whenever that was possible. To use these performance monitoring capabilities,
a simple custom library was developed. For each of the multithreaded execution
modes presented in section 3 we present measurements taken for three events:

e L2 Misses: The number of 2nd level read misses as seen by the bus unit.
For the TLP methods, including the prefetch hybrid method the L2 misses pre-
sented are the sum of the misses for both threads. For the pure software prefetch
method, only the misses of the working thread are presented.

e Resource stall cycles: The number of clock cycles that a thread stalls
in the processor allocator, waiting until store buffer entries are available. This
performance metric is indicative of the contention that exists between hardware
threads. For all cases, the results presented correspond to the sum of stall cycles
on behalf of both logical processors.

e pops retired: The number of pops that were retired during the execution
of the program. For all cases the pops number is the number of those retired for
both threads.

We have used the NPTL library for the creation and manipulation of threads.
Our operating system was Linux version 2.6.9. To force the threads to be sched-
uled on a particular logical processor within a physical package, we have used
the sched_setaffinity system call. All user codes were compiled with gecc 3.3.5
compiler using the O2 optimization level, and linked against glibc 2.3.2.

We evaluated performance using two computational kernels, Matrix Multi-
plication and LU decomposition, and two NAS benchmarks, CG and BT. In MM
and LU, we used 4096 x 4096 matrices, while in CG and BT we considered Class
A problem sizes. In MM and LU, we applied tiling choosing tiles that completely
fit in L1 cache, since this yielded the best performance. Furthermore, in MM we
used blocked array layouts (non-linear layouts) with binary masks [2] and ap-
plied loop unrolling. The implementations of CG and BT were based on the
OpenMP C versions of NPB suite version 2.3 provided by the Omni OpenMP
Compiler Project [1]. We transformed these versions so that appropriate thread-
ing functions were used for work decomposition and synchronization, instead of
OpenMP constructs. Both CG and BT are characterized by random memory
access patterns, with the latter exhibiting somewhat better data locality.

The TLP versions of the codes are based on coarse-grained work partitioning
schemes (tlp-coarse), where the total amount of work is statically balanced
across the participant threads (e.g., different tiles assigned to different threads
in MM and LU). The SPR versions use prefetching to tolerate cache misses,
following the scheme we described in section 3. In the pure prefetching version
(spr), the whole workload is executed by just one thread, while the second is
just a helper thread that performs prefetching of the next data chunk in issue.
In the hybrid prefetching version (spr4work), the workload is partitioned in
a more fine-grained fashion with both threads performing computations on the
same data chunk, while one of them takes on the prefetching of the next data
chunk. This latter parallelization scheme was applicable only in MM and CG.

Figure 1 presents the experimental results for the aforementioned bench-
marks. HT technology helped us to gain a speedup of 5% — 6% only in the case
of NAS benchmarks, when applying the TLP scheme. In the SPR versions, al-
though a significant reduction in L2 misses of the working thread was achieved
in most cases, this was not followed by overall speedup. As Figure 1(d) depicts,
in these cases, there was a noticable increase in the total number of pops, as
well, due to the instructions required to implement prefetching. For LU and CG,
specifically, the total pops were almost double than those of the serial case.
Since these extra instructions could not be overlapped efficiently with those of
the thread performing useful computations, as designated by the increased stall
cycles in the spr case of all benchmarks compared to their serial versions, the
reduction of L2 misses itself proved eventually not to be enough for performance
improvement.

5.1 Further Analysis

Figure 2 presents the utilization of the busiest processor execution subunits,
while running the reference applications. The first column (serial) contains re-
sults of the serial versions. The second column (tlp) presents the behavior of
one of two threads for the TLP implementation (results for the other thread are
identical). The third column (spr) presents statistics of the prefetching thread
in the SPR versions. All percentages refer to the portion of the total instruc-
tions of each thread that used a specific subunit of the processor. The statistics

13 1le+09
serial == serial
tip-coarse | == tlp-coarse

I

12 spr = spr
spriwork —sprwork
11

le+08

0.9

0.8

Speedup
L2 misses

07 1e+07 |

1e+06 1

MM L cG BT

0.6

0.5

0.4

MM L cG

(a) Speedup (b) L2 misses

le+1l 1e+12
= seral i

=== tip-coarse
= spr
— spriwork

serial
tip-coarse
spr

1l

sprework

1e+10

1409 |

uops

le+ll

Stall cycles

1e+08

16407 —Eu— 1e+10 —

MM L cG BT MM L cG BT

(c) Resource stall cycles (d) pops retired

Fig. 1. Experimental results

were generated by profiling the original application executables using the Pin
binary instrumentation tool [6], and analyzing for each case the breakdown of
the dynamic instruction mix, as recorded by the tool. Figure 3([4]) presents
the main execution units of the processor, together with the issue ports that
drive instructions into them. Our analysis examines the major bottlenecks that
prevent multithreaded implementations from achieving some speedup.

Compared to the serial versions, TLP implementations do not generally
change the mix for various instructions. Of course, this is not the case for SPR
implementations. For the prefetcher thread, not only the dynamic mix, but also
the total instruction count, differ from those of the worker thread. Additionally,
different memory access patterns require incomparable effort for address calcu-
lations and data prefetching, and subsequently, different number of instructions.

In the MM benchmark the most specific characteristic is the large number of
logical instructions used: at about 25% of total instructions in both serial and
TLP versions. This is due to the implementation of blocked array layouts with
binary masks that were employed for this benchmark. Although the out-of-order
core of the Xeon processor possesses two ALU units (double speed), among them
only ALUO can handle logical operations. As a result, concurrent requests for
this unit in the TLP case, will lead to serialization of corresponding instructions,
without offering any speedup. In the SPR case of LU, the prefetcher executes
at least the same number of instructions as the worker, and also puts the same
pressure on ALUs. This is due to the non-optimal data locality, which leads

Instrumented thread
EXECUTION UNIT serial | tlp | spr

ALUO+ALUL: 27.06% 26.26% 37.56%

FP_ADD: 11.70% 11.82% 0.00%

MM FP_MUL: 11.70% 11.82% 4.13%
MEM_LOAD: 38.76% 27.00% 58.30%
MEM_STORE: 12.07% 12.02% 20.75%

Total instructions: | 4590588278 | 2270133929 | 202876770
ALUO+ALUL: 38.84% 38.84% 38.16%

FP_ADD: 11.15% 11.15% 0.00%

LU FP_MUL: 11.15% 11.15% 0.00%
MEM_LOAD: 49.24% 49.24% 38.40%

MEM _STORE: 11.24% 11.24% 22.78%

Total instructions: | 3205661399 | 1622610935 | 3264715031
ALUO+ALUL: 28.04% 23.95% 49.93%

FP_ADD: 8.83% 7.49% 0.00%

cc FP_MUL: 8.86% 7.53% 0.00%
FP_MOVE: 17.05% 14.05% 0.00%

MEM_LOAD: 36.51% 45.711% 19.09%

MEM _STORE: 9.50% 8.51% 9.54%

Total instructions: | 11934228188 | 7069734891 | 166842453
ALUO+ALUTL: 8.06% 8.06% 12.06%

FP_ADD: 17.67% 17.67% 0.00%

BT FP_MUL: 22.04% 22.04% 0.00%
FP_MOVE: 10.51% 10.51% 0.00%

MEM_LOAD: 42.70% 42.70% 44.70%
MEM_STORE: 16.01% 16.01% 42.94%

Total instructions: | 44973276097 | 22486809710 | 8398026979

Fig. 2. Processor subunits utilization from the viewpoint of a specific thread

Port 0 Port 1 Port 2 Port 3
ALUO (x2) FP_MOVE ALU1 (x2) INTEGER FP Execute MEM_LOAD MEM_STORE
ADD/SUB FP move FP_ADD
Logic Shift FP_MUL Loads
Store data FXCH ADDISUB Rotate FE_DIV Prefetch Store address
FP Store data -
Branches .

Fig. 3. Instruction issue ports and main execution units of the Xeon processor

prefetcher to execute a large number of instructions to compute the addresses
of data to be brought in cache. These facts translate into major slowdowns for
the SPR version of LU, despite any significant L2 misses reduction.

As can be seen in Figure 1, TLP mode of BT benchmark was one of few
cases that gave us some speedup. The relatively low usage and thus contention
on ALUs, in conjunction with non-harmful co-existence of faddmul streams (as
Table 2 depicts) which dominate other instructions, and the perfect workload
partitioning, are among the main reasons for this speledup.

6 Conclusions

This paper presents performance results for a SMT architecture, the Intel hyper-
threaded microarchitecture. We examined scientific codes in which both TLP

and SPR schemes were applied. Our evaluation was based on actual program
execution, as well as simulation. The results gathered demonstrated the limits
in achieving high performance for such applications.

SPR. can achieve a fairly good reduction in L2 cache misses. However, in
order to fine tune data prefetching, a considerable number of additional instruc-
tions have to be inserted into the pipeline. This increase in the number of pops,
in combination with some kind of resource contention, harms performance in
terms of execution time. Besides, optimized applications with a relatively high
IPC (such as the tested microkernels), are really difficult to achieve even better
performance without reducing the pops executed.

Coarse-grained work partitioning schemes do not have a significant impact on
the number of pops executed (usually brings a slight increase). Total execution
performance would be expected to be improved, especially in cases of L2 cache
miss decrease. However, the two working threads, due to their symmetric profiles,
compete for the same hardware resources. This contention constitutes in some
cases a bottleneck to high performance.

References

1. Omni OpenMP Compiler Project. Released in the International Conference for
High Performance Computing, Networking and Storage (SC’03), Nov 2003.

2. E. Athanasaki and N. Koziris. Fast Indexing for Blocked Array Layouts to Improve
Multi-Level Cache Locality. In Proc. of INTERACT’04, Madrid, Spain.

3. J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. Shen. Spec-
ulative Precomputation: Long-Range Prefetching of Delinquent Loads. In Proc. of
ISCA 01, Goteborg, Sweden.

4. Intel Corporation. IA-32 Intel Architecture Optimization. Order Num: 248966-011.

5. D. Kim, S. Liao, P. Wang, J. Cuvillo, X. Tian, H. Wang, D. Yeung, M. Girkar,
and J. Shen. Physical experimentation with prefetching helper threads on Intel’s
hyper-threaded processors. In Proc. of IEEE/ACM CGO 2004, San Jose, CA.

6. C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi,
and K. Hazelwood. Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation. SIGPLAN Not., 40(6):190-200, 2005.

7. D. Marr, F. Desktop, D. Hill, G. Hinton, D. Koufaty, J. Miller, and M. Upton.
Hyper-Threading Technology Architecture and Microarchitecture. ITJ, Feb 2002.

8. N. Nethercote and J. Seward. Valgrind: A Program Supervision Framework. In
Proc. of RV’03, Boulder, CO.

9. D. Patterson and J. Hennessy. Computer Architecture. A Quantitative Approach,
pages 597-598. Morgan Kaufmann, 3rd edition, 2003.

10. F. Blagojevic T. Wang and D. Nikolopoulos. Runtime Support for Integrating Pre-
computation and Thread-Level Parallelism on Simultaneous Multithreaded Proces-
sors. In Proc. of LCR’2004, Houston, TX.

11. N. Tuck and D. Tullsen. Initial Observations of the Simultaneous Multithreading
Pentium 4 Processor. In Proc. of PACT ’03, New Orleans, LA.

12. D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading: Maximizing
On-Chip Parallelism. In Proc. of ISCA ’95, Santa Margherita Ligure, Italy.

13. H. Wang, P. Wang, R. Weldon, S. Ettinger, H. Saito, M. Girkar, S. Liao, and
J. Shen. Speculative Precomputation: Exploring the Use of Multithreading for
Latency. ITJ, Feb 2002.

