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Abstract

This paper proposes a new method for the problem of minimizing the execution time of nested for-loops using a tiling

transformation. In our approach, we are interested not only in tile size and shape according to the required communication to

computation ratio, but also in overall completion time. We select a time hyperplane to execute different tiles much more efficiently

by exploiting the inherent overlapping between communication and computation phases among successive, atomic tile executions.

We assign tiles to processors according to the tile space boundaries, thus considering the iteration space bounds. Our schedule

considerably reduces overall completion time under the assumption that some part from every communication phase can be

efficiently overlapped with atomic, pure tile computations. The overall schedule resembles a pipelined datapath where computations

are not anymore interleaved with sends and receives to nonlocal processors. We survey the application of our schedule to modern

communication architectures. We performed two sets of experimental results, one using MPI primitives over FastEthernet and one

using the SISCI API over an SCI network. In both cases, the total completion time is significantly reduced.

r 2003 Elsevier Inc. All rights reserved.
1. Introduction

One of the most difficult areas in the field of parallel
computing is the automatic loop parallelization and
efficient mapping onto different parallel architectures.
The key issue in loop mapping is to mitigate commu-
nication overhead by efficiently controlling the compu-
tation to communication grain. In distributed memory
machines, explicit message passing incurs extra time
overhead due to message startup latencies and data
transfer delays.
In order to eliminate the communication overhead,

Shang [19], Hollander [12] and others, have presented
methods for dividing the index space into independent
sets of iterations, which are assigned to different pro-
cessors. However, in many cases, independent partition-
ing of the index space is not feasible, thus data
exchanges between processors impose additional com-
munication delays. When fine grain parallelism is
concerned, several methods were proposed to group
onding author.
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together neighboring chains of iterations, while preser-
ving the optimal hyperplane schedule [23,6].
As far as coarse grain parallelism is concerned,

researchers are dealing with the problem of alleviating
the communication overhead by applying the supernode
or tiling transformation. Under this scheme, neighbor-
ing iteration points are grouped together to built a larger
computation node that can be atomically executed
without any intervention. Data exchanges are also
grouped and performed with a single message for each
neighboring processor, at the end of each atomic
supernode execution. Supernode partitioning of the
iteration space was proposed by Irigoin and Triolet in
[13]. In their paper, Ramanujam and Sadayappan [16]
showed the equivalence between the problem of finding
a set of extreme vectors for a given set of dependence
vectors and the problem of finding a tiling transforma-
tion H that produces valid, deadlock-free tiles. The use
of a communication function that has to be minimized
by linear programming approaches was used by Boulet
et al. in [4]. They calculated the total communication
produced by a tile as a function of its sides and shape
and proved that the minimization can be done
independently of the tile volume.
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Nevertheless, all above approaches ignore the actual
iteration space boundaries. Although tile shape is of
great importance to communication reduction, the
objective should be the overall tiled space completion
time. Hodzic and Shang [11] proposed a method to
correlate optimal tile size and shape, based on overall
completion time reduction. They consider supernode
transformations where data exchanges are between
neighboring successive tiles. In this context, the tiled
space is considered as a new iteration space with unitary
dependencies. They applied the hyperplane transforma-
tion to these loop tiles and generated a schedule where
the objective is to reduce the overall time by adjusting
the tile size and shape appropriately. Each processor
executes all tiles along a specific dimension, by inter-
leaving computation and communication phases. All
processors first receive data, then compute and finally
send result data to neighbors in explicitly distinct
phases, according to the hyperplane scheduling vector.
In this paper we propose an alternative method for

the problem of scheduling the tiles to processors. Each
atomic tile execution involves a communication and a
computation phase and this is repeatedly done for all
time planes. We are compacting this sequence of
communication and computation phases, by overlap-
ping them for the different processors. The proposed
method acts like enhancing the performance of a
processor’s datapath with pipelining, because a proces-
sor computes its tile at k time step and concurrently
receives data from all neighbors to use them at k þ 1
time step and sends data produced at k � 1 time step.
Since data communications involve some startup
latencies, we adjust the computation grain to make
room for this overhead and try to overlap with all
communication, which can be done in parallel. The time
hyperplane that allows for such overlapping is
determined by the bounds of the tiled space. Specifically,
the dimension with the larger boundary defines the
processor mapping, thus all tiles along this dimension
are mapped to the same processor. Previous work in the
field of UET-UCT scheduling of grid graphs in [1], has
shown that this schedule is optimal when the computa-
tion to communication ratio is one.
We investigate the application of our scheduling

method to modern communication architectures. At
first, a general message passing environment over a
packet based communication layer (e.g. MPI over
Ethernet) is considered. In this environment the over-
lapping schedule is achieved by appropriately using
nonblocking communication primitives and DMA.
Second, we consider a more advanced communication
technology like SCI. SCI NICs support shared memory
programming either through PIO (Programmed-IO)
messaging or through DMA. We are using their
kernel-level DMA support for messaging. Invoking
kernel system calls, causes extra CPU cycles overhead.
However, we can avoid extra copying from user space to
kernel space (physical memory) when using DMA. We
allocate user level pages which correspond to physical
pre-reserved memory regions, for DMA communica-
tions. If user level (virtual) memory, reserved for data
communication between neighboring tiles, is directly
mapped to hardware (physical), we have no extra
copying [14]. The zero copy transfer mechanism requires
that both sender and receiver memory areas must be
pinned down to physical memory during transfer, since
NICs and most DMA engines access only physical
memory addresses. Zero-copy is considerably reducing
the initial latency for data transfers (for the effects of a
zero-copy implementation of a common communication
layer see [5]). In addition to this, SCI shared memory
communication mode (either PIO or DMA based) is
dramatically reducing communication time, compared
to other software packet-based communication layers
(i.e. Ethernet ones like MPI). In fact, when using
SCI as communication medium, processes only declare
their communication endpoints (reserve memory areas
through kernel syscalls) and then all data exchanges can
be just implemented as very fast remote writes (‘‘send’’)
and local reads (‘‘receive’’). No other software protocol
layering is needed (packetization, etc.) which increases
initial latencies. SCI packetization and flow control is
completely in hardware.
We propose the use of DMA to remote write (send)

data to neighboring nodes, while the CPU is computing
each tile. Every node reserves special (pinned down)
regions of memory as message buffers, exported to the
SCI global address space. These memory areas are used
to store data needed to be sent to neighbors. All nodes
that have to ‘‘send’’ data, import these regions and
perform SCI remote writes, where data are being written
(transferred) with the aid of DMA. We use the SISCI
API [10,7,17] for all system calls related to SCI. The
CPU is doing all computations, calculating all results
per tile. It stores the results directly into reserved
physical memory areas where the DMA can directly
read them. DMA reads the results (locally) and sends
them to the neighboring nodes by performing remote
writes to the respective exported-areas. Each node is
importing the exported segments so that it can perform
remote writes to them. The CPU of the neighboring
node reads from its local (exported) segment the results
that the DMA post call of the previous node has written
to. Each node performs a enqueue-post DMA sequence
to prepare the DMA remote writing, then concurrently
issues the compute() call and finally, waits for DMA to
finish the transfer. Synchronization between neighbor-
ing nodes is done through SCI interrupts. Under the
above-implemented scheme, we avoid most of commu-
nication overhead and allow for actual computation to
communication overlapping. All experimental results
show that when the overlapping schedule is applied, the
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overall completion time is considerably reduced, under
the term of controlling the computation to communica-
tion grain.
The rest of the paper is organized as follows: Basic

terminology used throughout the paper and definitions
of loop tiling are introduced in Section 2. In Section 3
we analyze the properties of the nonoverlapping optimal
time schedule of tiles, whereas in Section 4 we introduce
the pipelined approach of an overlapping time schedule.
In Section 5 we discuss the application of our scheduling
method to specific communication architectures. In
Section 6 we present experimental results by simulating
both scheduling approaches to various problems
using MPI primitives and by implementing them on
SCI. Finally, we summarize our results and propose
future work.
2. Models—loop tiling

2.1. The model of the algorithms

In this paper we consider algorithms with perfectly
nested FOR-loops and constant loop-carried data
dependencies. That is, our algorithms are of the form:
FOR i1 ¼ l1 TO u1 DO
y

FOR in ¼ ln TO un DO
AS1ðiÞ

y

ASkðiÞ

ENDFOR
y

ENDFOR
where: (1) li and ui are integer-valued constants,
meaning that the iteration set is a parallelepiped/
multidimensional rectangle, (2) i ¼ ði1;y; inÞ and (3)
AS1;y;ASk are assignment statements of the form
V0 ¼ EðV1;y;VlÞ; where V0 is an output variable
indexed by i and produced by expression E operating on
input variables V1;y;Vl ; also indexed by i:

2.2. Notation

Throughout this paper the following notation is used:
N is the set of naturals, Z is the set of integers, n

is the number of nested FOR-loops of the algorithm
and m is the number of dependence vectors of the
algorithm. JnCZn is the set of indices: Jn ¼
f jð j1;y; jnÞ j jiAZ4lipjipui; 1pipng: Each point in
this n-dimensional integer space is a distinct instantia-
tion of the loop body. If A is a k
 l matrix, we denote
aij the matrix element in the i-th row and j-th column,
thus A ¼ faijg; where 1pipk and 1pjpl: A depen-
dence vector is denoted dj ¼ ðd1j;y; dnjÞT ; 1pjpm:
The dependence set DS of an algorithm A is the set of all
dependence vectors of this algorithm: DS ¼
fd1; d2;y; dmg: Similarly, the dependence matrix D is
defined as D ¼ fdijg; 1pipn; 1pjpm; where dij de-
notes the i-th coordinate of the j-th dependence vector.
Notice that all dependence vectors are considered
uniform and constant, i.e. independent of the indices
of computations.

2.3. Supernode transformation

In a supernode transformation the index space Jn is
partitioned into identical n-dimensional parallelepiped
areas (tiles or supernodes) formed by n independent
families of parallel hyperplanes. Supernode transforma-
tion is defined by the n-dimensional square matrix H ¼
fhijg [16]. Each row vector of H is perpendicular to one
family of hyperplanes forming the tiles.
Dually, supernode transformation can be defined by n

linearly independent vectors, which are the sides of the
supernodes. Matrix P contains the side-vectors of a
supernode as column vectors. It holds P ¼ H�1:
Formally supernode transformation is defined as fol-
lows:

r : Zn-Z2n; rð jÞ ¼
IHjm

j � H�1IHjm

� �
;

where IHjm identifies the coordinates of the tile that
index point jð j1; j2;y; jnÞ is mapped to and j �
H�1IHjm gives the coordinates of j within that tile
relative to the tile origin. Thus the initial n-dimensional
index space is transformed to a 2n-dimensional one, the
space of tiles and the space of indexes within tiles.
Indexes within tiles have to be sequentially executed,
while tiles themselves can be assigned to processors and
executed in parallel according to a valid hyperplane
schedule as we will see in Sections 3 and 4. The tiled
space JS and the supernode dependence matrix DS are
defined as follows: JS ¼ f jSj jS ¼ IHjm; jAJng; DS ¼
fdSjdS ¼ IHð j0 þ dÞm; dAD; j0AJnj0pIHj0mo1g
where j0 denotes the index points belonging to the first
complete tile starting from the origin of the index space
Jn: The tiled space can be also written as JS ¼
f jSð jS

1 ;y; jS
n Þ j jS

i AZ4lS
i pjS

i puS
i ; 1pipng: Each point

jS in this n-dimensional integer space JS is a distinct tile
with coordinates ð jS

1 ; jS
2 ;y; jS

n Þ:
Given an algorithm with dependence matrix D; for a

tiling to be legal, it must hold HDX0: This ensures that
tiles are atomic and that the initial execution order is
preserved [13,16]. In the opposite case, any execution
order of tiles would result in a deadlock.
In this paper, we assume that all dependence vectors

are smaller than the tile size, thus they are entirely
contained in each supernode’s area, which means that
jHDjo1 [24] or alternatively that the supernode
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dependence matrix DS contains only 0’s and 1’s. This
assumption is quite reasonable since dependence vectors
for common problems are relatively small, while tile
sizes may result to be orders of magnitude greater in
systems with very fast processors. So, for a computation
to communication grain to be meaningful, tiles are large
enough to encapsulate all dependence vectors. In this
case every tile needs to exchange data only with its
nearest neighbors, one in each dimension of Jn:

2.4. Computation cost–communication cost

The number of index points contained in a supernode
expresses the respective computation cost of this super-
node (tile), and is calculated by detðPÞ: Thus, we have
Vcomp ¼ detðPÞ: The communication cost of a tile is
proportional to the number of iteration points that need
to send data to neighboring tiles, in other words, the
sum of dependence vectors cutting the supernode’s
boundaries. This can be calculated by the expression:

VcommðHÞ ¼ 1

jdetðHÞj
Xn

i¼1

Xn

k¼1

Xm

j¼1
hikdkj: ð1Þ

Practically, this formula computes and sums all possible
hidj; which express the contribution to communication
of every dependence vector, to every tile boundary
surface.
If tiles along the same dimension are mapped to the

same processor, dependence vectors cutting the tile’s
boundary surface in the respective dimension impose no
interprocessor communication. In that case, the com-
munication cost is calculated by the expression:

VcommðHÞ ¼ 1

jdetðHÞj
X

iAf1;y;x�1;xþ1;y;ng; jAf1;y;mg

ðH�xDÞij ; ð2Þ

where H�x denotes the H matrix with the column vector
vertical to the boundary surface in the dimension of
processor mapping extracted. A technique, presented
in [4,25], calculates the vector H that imposes the
minimum amount of communication for a given
supernode size.

2.5. Scheduling of tiles

If HDX0; tiles are atomic and preserve the initial
execution order. Consequently the tiled index space JS

can be scheduled using similar techniques to the initial
index space Jn: In this paper we use linear schedules.
Recall [18] that a point jAJn scheduled according to a

linear time schedule P; will be executed at tj ¼ IPjþt0
disp Pm;

where t0 ¼�minPi: iAJn and disp P ¼ minPdi: diAD:

Thus, a tile jSAJS will be executed at tjS ¼ IPjSþt0
disp Pm:
3. Non-overlapping schedule

In [11], Hodzic and Shang have presented a scheme
for scheduling loops that have been transformed
through a supernode transformation. The optimal tile
size g that minimizes total execution time is determined
by the actual parallel architecture parameters i.e.
communication to computation grain. Given the tile
size, they calculate the optimal tile transformation H

that reduces communication cost for each tile. The rows
of matrix H determine the actual tile shape. Relative
sizes for tile sides and shape are defined by the
dependence vectors of the algorithm, whereas tile
volume (size g) is defined by the hardware parameters.
Once H is fully determined, it is applied to the original
index space. The resulting tiled space JS is scheduled
using a linear time hyperplane P: All tiles along a
certain dimension are mapped to the same processor.
Total execution of tiles consists of successive computa-
tion phases interleaved with communication ones. A
processor receives the data needed to execute a tile at
time step i; performs the computations and sends to its
neighboring processors the boundary data, which will be
used for tile calculations in time step i þ 1:
Thus the total execution time is given by:

Tblock ¼ PðgÞðtcomp þ tcommÞ; ð3Þ

where tcomm ¼ tstartup þ ttransmit is the communication
time, PðgÞ is the number of time hyperplanes needed to
execute the algorithm, tcomp the execution time of a tile
(tcomp ¼ gtc), where tc is one Jn iteration’s computation
time. tcomm can be expressed as the communication
startup latency (tstartup), and a factor expressing the
transmission time (ttransmit). Clearly the total execution
time depends on tile size g; since it affects the number of
time planes (increase of tile size g leads to reduction of
total time planes), the computation cost (gtc) and the
communication volume (Vcomm).
Let us now consider the implementation of the above

schedule in a message passing environment. In this
context, the execution time of a computation and a
communication phase consists of: the transmission time
of the data to be received (ttransmit), the receive startup
time tstartup; the computation time tcompute; the send
startup time tstartup and the send transmission time
(ttransmit).
The overall parallel loop execution consists of atomic

computations of tiles, interleaved with communication
for the transmission of the results to neighboring
processors. Since the tiled space JS has only the unitary
dependence vectors (see Section 2.3), the optimal linear
time schedule can be easily proved to be: P ¼
½1 1 y 1�: For example, tile jSð jS

1 ; jS
2 ;y; jS

n Þ is exe-
cuted at PjS �PjS

init time step, where jS
init is the first

executed tile. Given that jS
init ¼~00 ) PjS

init ¼ 0; then jS is
executed at jS

1 þ jS
2 þ?þ jS

n time step. The number of
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time hyperplanes PðgÞ in (3) is equal to PjS
final �PjS

init þ
1; where jS

final is the last executed tile.
In Fig. 1, the nonoverlapping schedule is shown for a

tiled space using six processors. Each time step between
successive hyperplanes contains a triplet of receive-
compute-send nonoverlapped subphases for each tile.
All tiles along the same dimension are mapped to the
same processor.
This quite straightforward model of execution results

in very good execution times, since it exploits all
inherent parallelism at the tile level. However, an
important drawback of this execution model is that
each processor has to wait for essential data before
starting the computation of a certain tile, and wait for
the transmission of the results to its neighbors, thus
resulting in significant idle processor time.
4. Overlapping schedule

The linear schedule presented in the previous section
achieves a moderate processor utilization. All processor
nodes are concurrently either computing or commu-
nicating their results to their neighbors. However, what
really imposes such inefficient processor utilization, is
the data flow between successive time steps. Specifically,
it seems that computations and respective communica-
tion substeps for each time step should be serialized to
preserve the correct execution order. Every processor
should first receive data, then compute and finally send
the results to be used at the next time step by its
neighbor.

It would be ideal if a node was able to receive,
compute and send data at the same time. Modern
network interfaces (NICs) are equipped with DMA
engines that can work in parallel with the CPU. This
means that some communication work can be over-
lapped with actual CPU cycles. In addition to this,
nonblocking message passing primitives mitigate pro-
cessor waits for the completion of the respective
messaging operations. In fact, even some nonblocking
work needs the CPU initially, but most of it, including
the transmission phase, can be ideally overlapped with
other useful computation. A much more thorough look
at the correct data flow in the nonoverlapping case,
reveals the following interesting property: If we slightly
modify the initial linear schedule, then we could overlap
some communication time with computations. This
means that, in each time step, the processor should
send and receive data that is not directly dependent to
the data computed at this step. A valid time execution
scheme comprises the following actions during k time
step: A processor receives neighboring data which
will be used at k þ 1 time step, sends data produced at
k � 1 time step and computes data received at k � 1
time step (Fig. 2).

In [1], a linear hyperplane for the optimal time
scheduling of Unit Execution Times–Unit Communica-
tion Times grid task graphs was presented. Grid graphs
are like iteration spaces with unitary dependence
vectors. Considering UET-UCT model, it is like having
communication phases that need equal time to compu-
tation ones. In [1], it was also proven that the optimal
space schedule for UET-UCT was to assign all points
along the maximal dimension to the same processor.
The analogy of equal computation to communication
times with our case is obvious. If we could achieve a
computation to communication grain g; so that the time
needed to communicate with the others is equal to the
time needed for the CPU to compute, then we could
apply this slightly modified linear schedule and the
respective space schedule. In this case, the optimal time
schedule is P ¼ ½2y2 1|{z}

pos i

2y2�; where i denotes

the maximum dimension. For example, tile

jSð jS
1 ; jS

2 ;y; jS
n Þ is executed at P0jS �P0jS

init time step,

where jS
init is the first executed tile. Given that jS

init ¼~00 )
P0jS

init ¼ 0; then jS is executed at 2jS
1 þ 2jS

2 þ?þ
2jS

i�1 þ 2jS
iþ1 þ?þ 2jS

n þ jS
i time step.

In Fig. 2, the overlapping scheduling is shown.
Consider, for example, processor P3 at k time step:
while it makes the computation for a tile, it concurrently
performs the following: sends the results produced
during k � 1 time step and receives data from neighbors,
to be used during the computation of the next tile at
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k þ 1 time step. Note the arcs shown in Fig. 2. They
depict the actual flow of data between successive time
steps (computes-sends-receives) in pipelined way. The
outcome of this schedule is to have successive computa-
tions overlapped with communication phases, thus
theoretically 100% processor utilization.
Similar to expression (3) the total execution time in

the overlapping schedule is given by:

Toverlap ¼ P0ðgÞmaxðtcomp; tcommÞ; ð4Þ

where again here tcomm ¼ tstartup þ ttransmit:
The number of execution time steps denoted by P0 in

(4), which depends on tile volume g; is equal to the
execution time P0jS

final þ 1 of the final executed tile jS
final;

given that the initial tile is executed at time step 0: So,
from (4) we get:

Toverlap ¼ ðP0jS
final þ 1Þmaxðtcomp; tcommÞ: ð5Þ

This theoretical result will be evaluated in the
following sections by comparison with experimental
results of kernels using our scheduling theory. In the
next sections, we will describe the properties of two
experimental platforms concerning the evaluation of our
scheduling theory.
Since the concept of overlapping of actions is crucial,

it should be noted that the actions initiated by a
nonblocking call are overlapped with the actions
initiated by calls following the nonblocking call. On
the contrary, a blocking call implies no overlapping of
actions, since a following call can be initiated only after
the blocking call has completed.
5. MPI–TCP/IP–FastEthernet

Message Passing Interface (MPI) library on top of
TCP/IP networking layers over FastEthernet network
interface is the most common configuration for im-
plementing and executing parallel applications on
computer systems. MPI (and the ongoing MPI-2) is
the de facto standard library specification for message-
passing. TCP/IP is the network protocol layering mostly
used even in LANs, despite its wide area networking
nature. The descendant of 100 Mbps Ethernet (Fast-
Ethernet) is 1 Gbps Ethernet (Gigabit Ethernet - GbE)
and is the standard interconnection technology used to
build Beowulf clusters serving as affordable parallel
machines.
We used this configuration in order to evaluate our

scheduling method. It was already known that MPI
standard included the notion of nonblocking commu-
nication implemented in the MPI I� commands (e.g.
MPI Isend initiates a nonblocking send). Our scheduling
theory would be easily tested using pseudocode seg-
ments similar to the following:
MPI Isend(sbuf, neighboring nodes);

MPI Irecv(rbuf, neighboring nodes);

compute();

MPI Wait(MPI Isend);

MPI Wait(MPI Irecv);
According to the MPI standard, in the above
pseudocode segment the computation (compute()) is
performed concurrently with transmission and recep-
tion. However, after the first experimental results, we
noticed that the nonblocking method, compared to the
blocking one, had equal or even worse performance in
terms of execution times, which was against our
intuition. This oddity was due to several reasons, which
are described below.

5.1. Platform-dependent inefficiencies

All MPI implementations essentially follow the MPI
standard, which was evolved considering portability as
its first priority. Due to the fact that not every aspect of
this wide standard is implementable on every possible
platform, many MPI implementations adopt a more
conservative approach, implementing only a part of all
functions and routines, exactly as specified by the
standard. According to the MPI standard, MPI Isend

and MPI Irecv commands are the ones to be used for
nonblocking communication. However, since not every
networking platform is capable of carrying out non-
blocking communication calls (e.g. lack of DMA engine,
protocol inefficiencies, etc.), in those cases both MPI
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calls underneath use blocking primitives, resulting in a
loss of their expected nonblocking functionality.
Given the fact that MPI nonblocking commands

could not deliver the nonblocking performance needed,
we considered bypassing MPI library routines and
conduct our experiments using Unix sockets as com-
munication primitives. We decided to program on a
lower level, in order to acquire more accurate control
over the communication process and achieve the desired
nonblocking features. In this way, we would also avoid
the additional buffer copying imposed by the use of MPI
library. However, current networking protocols and
hardware commodity were obstacles to true overlapping
communication with computation.

5.2. Protocol inefficiencies

Network programming in Unix environment is most
times synonymous to socket interface, which is the most
common way of communication among Unix hosts.
After initializing the two endpoints of a communication,
each node holds a socket descriptor which can be used in
collaboration with write and read system calls
for sending and receiving data, respectively. During
the initialization phase, the communication type
is determined as either reliable or unreliable. MPI
libraries always depend on reliable communication
(TCP/IP) and never on unreliable (UDP/IP), even
though reliable communication is slower, since they
would have to implement the reliability procedure in
application level.
In order to comprehend the mechanism of such

communication, the following system call is described in
a reliable connection context:
(void) write(sd, buffer, len);
where sd is a socket descriptor, buffer is a pointer to
the buffer where data are kept, and len is the length of
data measured in bytes. After issuing this system call,
T
C

P

user space
kernel space

t addheadcopy2kerneltsyscallt

u
k

CPU

NIC

kernel

execution

process

execution

Fig. 3. Successive sending phases for a packet, including CPU and NIC. (a) C

from user space to kernel space, (c) CPU adds protocol headers, (d) CPU sets

is free for computations.
the following actions take place: First, the CPU
execution mode turns from user mode to kernel mode
(Fig. 3). The data buffer, if larger than a certain
threshold, is not sent as a whole but is broken into
smaller pieces. Each of these pieces is copied to kernel
space by the CPU, which also adds TCP, IP and
Ethernet headers to the packet. CPU then programs
NIC’s DMA engine to transfer the packet to NIC’s
buffers and can immediately perform other tasks, in-
cluding data computations. As soon as DMA finishes,
CPU is interrupted to be informed of that. The actions’
chain is shown in Fig. 3.
The use of MPI, on top of this layering, decreases the

overlapping time percentage, since all MPI communica-
tion actions, which are not included in the aforemen-
tioned hierarchy, are buffering and bookkeeping
operations and occupy the CPU exclusively.

5.3. Implementation

From the aforementioned facts, it is inferred that
the only part of communication from which CPU
is alleviated and can perform useful computations, is
during the DMA data transfer to NIC’s buffers
(Fig. 3e). Since such overlapping is not adequate for
implementing our scheduling theory, we decided to
simulate our schedule using MPI on top of TCP/IP over
FastEthernet.
We ran our experiments on a cluster with 16 identical

500 MHz Pentium III nodes. Each node has 128 MB of
RAM and 10 GB hard drive and runs Linux with 2.2.14
kernel version. Each node runs its own OS kernel,
installed in local drive to avoid NFS traffic during the
experiment’s time. The cluster nodes are interconnected
using 100 Mbps FastEthernet. There exists a frontend
machine serving as router, to isolate the cluster from the
other LAN, so that nonlocal network traffic is banned.
The communication library used is the MPICH im-
plementation on MPI.
NIC

IP

E
T

H

tDMA

tcomputetDMAsetupers

ser space
ernel space

size
target
source

PU execution switches from user to kernel mode, (b) CPU copies data

up DMA engine, (e) NIC DMA transfers data to its buffers, while CPU
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Our test application was a 3-D loop to be executed on
the 16 nodes. We used a nested loop with only one
assignment statement i.e.:
for ði ¼ 1; ioDIMX; iþþÞ
for ð j ¼ 1; joDIMY; jþþÞ

for ðk ¼ 1; koDIMZ; kþþÞ
Aði; j; kÞ ¼ sqrtðA½i� 1�½j�½k�Þ þ sqrtðA½i�½j� 1�½k�Þ þ \sqrtðA½i�½j�½k� 1�Þ;
We used square roots and floats to increase computa-
tion time at a reasonable value, so as to efficiently
control computation to communication grain. In this
case, the optimal tiling is in rectangular tile shapes. Each
tile is a cube with ij; ik and kj sides. We selected k

dimension to be the largest one, so all tiles along k-axis
are mapped to the same processor Pði; jÞ; iA½0; 3�;
jA½0; 3�: During each time step, every processor in the
ij plane with coordinates ði; jÞ receives from neighboring
processors ði � 1; jÞ and ði; j � 1Þ; computes and sends to
processors ði þ 1; jÞ; ði; j þ 1Þ:
For the overlapping case to achieve overlapping of

computation and communication, we need additional
space compared to the nonoverlapping case on each
send(to processor, time produced)
receive(from processor, time to be used)

receive(from_proc
receive(from_proc

send(to_proc(i+
send(to_proc(i,j

k-1 k

TIME

receive(from_proc(i-1,j), k)
receive(from_proc(i,j-1), k)

send(to_proc(i+1,j), k-2)
send(to_proc(i,j+1), k-2)

compute(proc(i,j), k-1) compute(proc(

k

j

i

receive(from_proc(i,j-1), k+1)

receive(from_proc(i-1,j), k+1)

Fig. 4. Timing and extra bufferin
node to buffer the surfaces that are received or being
sent to every neighboring node, while altering the data
during the computation of ði; j; kÞ tile. The overall time
schedule for k time step and the extra buffer to achieve
overlapping is shown in Fig. 4. The additional buffering
resembles the pipeline registers among consecutive
pipeline stages, during the evolution from a multicycle
nonpipelined datapath to a pipelined one [15].
In order to compare both theories, we implemented

both the overlapping (nonblocking) and the nonover-
lapping (blocking) cases. The pseudocode for the
blocking case is:
for i ¼ 0 to max i tile� 1
(i-
(i,

1,j
+1

i,j

g

for j ¼ 0 to max j tile� 1
1,j), k+1)
rj-1), k+1)
r

), k-1)
), k-1)

), k)

for the over
ProcB(i,j)
eceive(from_proc(i,j-1), k+2)
eceive(from_proc(i-1,j), k+2)

send(to_proc(i+1,j), k)
send(to_proc(i,j+1), k)

k+1

compute(proc(i,j), k+1)

send(to_proc(i+1,j), k-1)

send(to_proc(i,j+1), k-1)

lapping case.
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where: ProcB(i,j) is

for k ¼ 0 to max k tile� 1 f

MPI Recv(T(i-1,j), results(T(i-1, j), k))
0.5
MPI Recv(T(i,j-1), results(T(i, j-1), k))
)
c
compute();
0.4e 
(s

e

MPI Send(T(i+1,j), results(T(i,j), k))
T
im
MPI Send(T(i,j+1), results(T(i,j), k))

0.3
g
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While the pseudocode for the nonblocking case is:
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4096 space.
In our experiments, MPI Ssend1 is used instead of
MPI Send in the blocking case, in order to simulate the
absence of parallelism and overlapping in the blocking
case. MPI Ssend call returns when the message sent has
been received from the receiving process.

5.4. Results

In Figs. 5–7 the improvement in the execution of the
blocking and nonblocking version of the algorithm is
shown. The nonblocking version is much faster and
it would be even faster if there were a special sub-
system that would handle the communication part, so
that it would be completely in parallel with the
computation part.
The experiments were concerning three cases, depend-

ing on the size of initial Jn iteration space. We selected a
16
 16
 16384 space, a 16
 16
 32768 and a 32

32
 4096 space, where DIMX
 DIMY
 DIMZ represent
chronous send.
the boundaries of i; j; k axes, respectively. This means
that, for example, in the first case, i ¼ 1y16; j ¼ 1y16
and k ¼ 1y16384: We deliberately selected small i; j
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maximum values, so that k is always larger than the
other two. The tiled space will have k dimension as its
larger one, so mapping all tiles to the same processor is
performed along the k-axis. This gave us the opportu-
nity to use all 16 processors for the different tiles
projected in ij plane. Without lack of generality, we
selected unitary initial dependencies, thus the optimal
tiling is a rectangular one. For every one of the above
three problems, we were using all 16 processors, that is,
four processors along each i and j dimensions. This
means that all tiles, for example in the first case, had
sizes of 4
 4
 z where z was a variable (z is denoted as
tile height, since it is the size of tile along axis k). For all
possible values of z; ranging from 4 to 32768

4 ; we ran both,
complete, non overlapping and overlapping MPI
programs, and calculated the size of zoptimal for which
the minimum completion time is achieved. Figs. 5–7
summarize our results for all three cases.
6. Implementation using Scalable Coherent Interface

In the previous section, there were several obstacles
that hindered us from implementing the proposed
scheduling theory due to the customary network
technologies used. We could not allow for concurrent
use of CPU and NIC due to limited capabilities of the
networking subsystem. This could be avoided if novel
communication technologies such as Scalable Coherent
Interface (SCI) were used.
SCI supports a Distributed Shared Memory approach

for communication among hosts. An SCI communica-
tion scenario involves the following stages: A process in
an SCI node exports a memory segment which is
imported by a process that resides in another SCI node.
Every imported memory segment is directly mapped to
the PCI I/O space of the PCI-SCI NIC. It is part of the
importer’s (process) virtual memory through the prior
invocation of an SCIConnectSegment() driver call.
When the importing node needs to send data, it just
writes it directly to the imported memory segment, while
when it needs to read data, it just reads it directly from
the imported segment (Fig. 8).

6.1. DMA transfers

Message data can be usually transferred in two ways;
Programmed I/O (PIO) mode and DMA mode. In PIO
mode, CPU handles data transfer completely, which was
the case in the previous paragraph. The data transfer of
1Kwords, involves the initial copying of these words
from main memory to the NIC’s buffers; the task would
be performed by the host’s CPU. From a parallel
application’s point of view, these are considered ‘‘lost’’
CPU cycles, since useful calculations could have been
executed instead.
On the contrary, using DMA mode, CPU only
programs the NIC’s DMA engine with the information
of which data to transfer from main memory and where
to send it (Fig. 9). CPU is not blocked during the
transfer and can perform other (useful) tasks.
In order to send data using DMA, it is essential for

the data to be stored contiguously in physical memory.
Being able to handle DSM communication using PIO
mode, SCI has developed mechanisms that enable
efficient memory allocation and usage. Using special
SCI driver calls, the system returns physically contig-
uous allocated memory. This is performed using the
get free pages() kernel routine. The allocated

memory is first ‘‘pinned down’’ and then mapped to
user’s virtual memory (Fig. 10). User is able to read/
write that memory region like the ordinary memory
regions returned by LIBC malloc(). Despite the fact
that SCI DMA transfer is only invoked as a kernel
system call, the complete transfer of the specific memory
area will be performed with only one DMA invocation.

6.2. Implementation

We used 9 800 MHz Pentium-III nodes intercon-
nected with an SCI network based on Dolphin’s D330
SCI NICs. Each node has 128 MB of main memory.
The OS is Linux with kernel from the 2.4.x series. In
order to assess the benefits of the proposed scheduling
theory, we ran two types of experiments. The first one
implements the overlapping (nonblocking) algorithm
and is compared to the second one which implements
the nonoverlapping (blocking) algorithm. The test
application was implemented using C and the SISCI
API [10]. We also compare our overlapping experimental



ARTICLE IN PRESS

MEM

SA

0

SA+SZ
CPU

1

2

DMA controller

start_address= SA
size= SZ
read/write= R/W
start= GO

SCI
card SCI network

Fig. 9. DMA or nonblocking send.

CPU

VMA

PMA

SCI

process

SCI
network

memory mapped
"RAM device"

segment

mapped to

Fig. 10. Locked (pinned down) and memory mapped ‘‘RAM device’’

for SCI communications. While CPU computes data, results are stored

to physically contiguous memory, ready to be sent as a whole using

DMA.

0.335

0.34

0.345

0.35

0.355

0.36

0.365

2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
(s

ec
)

Tile Height

Computation Time for 12x12x512K Iteration Space

overlapping with sci
overlapping without sci

non-overlapping

Fig. 11. SCI: comparison of experimental computation times for 12

12
 512 K:

N. Koziris et al. / J. Parallel Distrib. Comput. 63 (2003) 1138–11511148
results with the results calculated using the theoretical
formula given by Eq. (5).
We conducted our SCI experiments using the same 3-

D loop used in the MPI over TCP/IP over FastEthernet
case. Our 9 cluster nodes were organized as a 3
 3 array
of processors. The optimal tiling is in rectangular tile
shapes. Each tile is a cube with ij; ik and kj sides.
Without lack of generality, we selected k dimension to
be the largest one, so all tiles along k-axis are mapped to
the same processor Pði; jÞ; iA½0; 2�; jA½0; 2�: The data
exchanges, timing and buffering characteristics of the
MPI case (Fig. 4) are also valid in this case.
According to expression (5), the theoretical total

execution time for the SCI overlapping case is:

ToverlapðzÞ ¼ ð2ðxi þ xjÞ þ xk þ 1Þmaxðtcomp; tcommÞ; ð6Þ

where in our case, jS
finalðxi; xj; xkÞ is the last executed tile

according to the overlapping scheduling theory.
We assume that tcomp ¼ tcomm so maxðtcomp; tcommÞ ¼
tcomp: Expression (6) does not include the communica-
tion time that cannot be overlapped with computation
time. So (6) must be enriched with terms tstart dma and
tsync; that represent time to initiate a DMA procedure
and synchronization between nodes, respectively. So (6)
becomes:

ToverlapðzÞ ¼ ð2ðxi þ xjÞ þ xk þ 1Þ

 ðtstart dma þ tcomp þ tsyncÞ: ð7Þ

In the above expression, xi is equal to DIMX=3� 1;
similarly xj is equal to DIMY=3� 1; and xk is equal to
DIMZ=z � 1: Tile’s height is denoted by z and since a tile
contains g ¼ xyz iteration points and x; y are already
known as problem variables, in our experiments only z is
unknown.
Due to the need for synchronization between any two

successive time steps, nodes have to signal each other
using SCI interrupts, which impose a constant delay,
tsync ¼ 4
 tsci interrupt: We ran several ping-pong tests
and derived the values tstart dma ¼ 49:2 ms and
tsci interrupt ¼ 18:8 ms:
The total computation time for the execution of each

application, either overlapping or nonoverlapping, is
constant and can be seen in Fig. 11 for the ‘‘non-
overlapping case’’ and the ‘‘overlapping case without
SCI’’. The latter concerns the execution of the over-
lapping case, having commented out all the SCI
communication functions. In this way we only measure
the pure computation time tcomp; which is calculated
using the following code:
gettimeofday(start, NULL);

compute();

gettimeofday(end, NULL);
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Table 1

Internal part of program’s main loop

Sequence of functions Respective SCI calls Action performed

trigger interrupt(n-1) SCITriggerInterrupt() Inform ‘‘prev’’ node(s) ‘‘Ready to accept data’’

wait for interrupt(n+1) SCIWaitForInterrupt() Wait till ‘‘next’’ node(s) ready to receive data

send dma(n+1, data) SCIPostDMAQueue() Init of DMA transfer to neighboring nodes

compute() compute() Computation

wait for dma() SCIWaitForDMAQueue() Wait for DMA to complete

trigger interrupt(n+1) SCITriggerInterrupt() Inform ‘‘next’’ node(s) ‘‘Data have arrived’’

wait for interrupt(n-1) SCIWaitForInterrupt() Wait till ‘‘prev’’ node(s) has finished sending
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The computation time for the overlapping case,
considering also the SCI communication functions, is
shown in Fig. 11. The decreasing plot is due to the
frequent kernel invocations which are servicing inter-
rupts for SCI communication: local CPU, apart from
compute(), also handles both SCITriggerInterrupt

executed on a neighboring node and SCIPostDMAQueue

executed on the current node. In the beginning of each
experiment, the tile size is small, so there is a substantial
number of exchanged interrupt signals (SCITrigger-
Interrupt) and data transmissions (SCIPostDMAQueue)
routines existing in main loop body. When the number
of iterations is reduced due to increased tile size,
the CPU time consumed on handling interrupts is
decreased, and finally converges to the nonover-
lapping case. Thus, the pure compute time used to
calculate the theoretical plots should come from the
nonoverlapping case.
The internal part of the nonblocking program’s main

loop can be seen in Table 1. Since send dma() is not
blocking, the compute() call is concurrently executed.
After the execution of wait for dma(), it is assured that
both computation and communication are already
completed. The blocking program is implemented
by swapping the compute() and send dma(n+1,

data) calls.
The above test application was executed using initial

J3 index spaces with various DIMX
 DIMY
 DIMZ sizes.
Typical experimental values for DIMX=DIMY were 12 or
24 and for DIMZ were 256 K; 512 K; or 2048 K: We
measured execution times for the following overlapping
and nonoverlapping cases 12
 12
 512 K (also in [20]),
24
 24
 256 K and 24
 24
 2048 K:
Overlapping and nonoverlapping overall execution

times for each problem are plotted in Figs. 12–14. It can
be seen that, in all cases, overlapping (pipelined)
executions, which take advantage of the cluster’s high
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performance communication features, are considerably
faster than the nonoverlapping (blocked) ones.
In Fig. 15, the experimental result is compared to our

analytical calculations derived from (7). The plot for the
experimental time measured, is very close to the
theoretical function. This is due to the fact that (7)
includes a thorough and detailed analysis of actual
possible time delay parameters. For example, from the
minimum of each function in Fig. 15, it can be easily
calculated that the difference between experimental
minimum and theoretical minimum is nearly 0:2%;
achieved for values of tile heights, which are very close
to each other.

7. Conclusions

In this paper we proposed a novel approach for the
problem of minimizing the completion time for loop
tiles by overlapping computation and communication
for each tile execution. Both experimental results using
SCI and simulation results using MPI show that our
scheduling theory achieves better execution times than a
corresponding nonoverlapping one. Experimental re-
sults have also shown that the theoretically calculated
overall time, following the optimal hyperplane transfor-
mation, is very similar to the experimental results.
The only available hardware to conduct experiments

was PCI-SCI NICs which use kernel DMA initializa-
tion. However, if we could avoid all kernel initialization
of DMA, then the initial DMA startup time could have
been considerably reduced. Since DMA is initiated
through calls from kernel level, we thus introduce extra
overhead, which could increase overall execution time.
User Level Networking architectures, such as U-Net [8]
and the ensuing VIA standard [21], allow for direct
access of the NIC from virtual memory areas and
without any kernel intervention (see [2,3]).
At the moment there is no public available hardware
VIA implementation for PCI-SCI cards, that uses DMA
as communication mode. In fact, in [9], a VIA solution
for SCI was presented, using PIO as the only available
communication mode. It is obvious that we essentially
need overlapping, so even avoiding kernel system calls’
overhead is not enough. In [22], a novel hardware
implementation of a PCI-SCI bridge is presented,
supporting both downstream and upstream Address
Translation Tables (ATTs), thus capable of exporting
any arbitrary virtual memory page and access it directly
by DMA, but this is also not available to us. Intuitively,
we expect that if we achieve 100% overlapping of
computation with communication, then overall execu-
tion time using our scheduling theory will reach its
minimum.
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